
Contents
Documentation 2

Current state of the implementation 2
Python API sketch . 4

How to initialize a service to enable the authorization engine? 5
Enforcement in Object logic . 5
Examples of a filtered search . 5
Implications on UDM usage . 6

Requirements for Attribute Based Access Control authorization in UDM 7
What restrictions does UDM require? . 8

Integration of UDM Authoriztion using the Guardian concept 8
Permissions & Capabilities . 8
Differentiation of search vs read permissions . 9
Handling of UDM extensions e.g. Extended Attributes 10
Conditions provided by UDM . 10
Default example roles . 10
Wildcard permissions . 11
Define the role of the tree structure / Comparision with LDAP ACLs 11

Known problems with Guardian 12
General/Conceptual problems . 12

Ambiguity of implementation . 12
Capabilities are bound to roles . 12
Capabilites vs Permissions: What is API, what is opaque? 13
Restricted charset . 13
Capability namespace binding restricted to the permission namespace 13
No dynamic contexts allowed . 14
No removal in Guardian possible . 14
Permission granting: no negative permissions . 15
Permission lifecycle . 15
No language to describe rules: just HTTP API endpoints with JSON payloads . 16
No Caching possible: Capabilities are bound to targets 21
Guardian concepts are too abstract . 21

Security Impacts . 21
Availability of UDM . 21
Information disclosure . 22
OPA/Rego doesn’t know LDAP DNs . 22
Guardian as Policy Information endpoint doesn’t add security to the whole system

architecture automatically . 23
Guardian has no way to trace decisions . 23
Guardian debugability . 23
Guardian API design: new/old state of targets not required for filtering 23

Performance Impacts . 24
Search results must provide full data to Guardian 24
Guardian API design: extensive data format . 24
UDM is synchronous . 24
Rule evaluation stays on the client. 24

S. 1/27

check-permissions vs get-permissions endpoints 24
UDM actions do a lot of sub-actions . 25

Management UI Usability problems . 25
Managment API bugs and issues . 25

Changing conditions impossible . 25
Failed decoding of input JSON data . 25
Unreachable API . 25
Performance of Management API . 25
cyclic dependency problem . 26

Questions . 26
Conclusion . 26

[TOC]

This document describes various details about the integration of ABAC (attribute based access
control) in UDM. It describes the current released status, implementation details, requirements
and use cases we got from Product Management and the challenged of integration Guardian
and Guardian concepts into it.

Documentation
The documentation for this feature can be obtained in ext-delegative-administration.

Current state of the implementation
Historically authorization in UDM was just realised via LDAP ACL’s. The ABAC authorization
concept has been integrated into UDM via Bug #58432.

User
|

+--------------------+----------------------+
| | |

+--------v--------+ +-------v---------+ +--------v---------+
| UMC | | UDM REST | | UDM CLI |
| ACLs enabled | | ACLs enabled | | ACLs not enabled |
+-----------------+ +-----------------+ +------------------+

| | | | |
| | admin connection| |user connection |user connection
| | | | |

admin connection| |user connection | | |
| | | | |

+-v--v-+ +-v--v-+ +--v--+
+----->| UDM | +----->| UDM | | UDM |

authorize +------+ authorize +------+ +-----+
| | | | |

+----v-----+ | | | |
AuthZ	<---	---------+	
Egnine /			
Guardian			
+----------+ | | |

| | |

S. 2/27

https://docs.software-univention.de/ext-delegative-administration/5.2/en/
https://forge.univention.org/bugzilla/show_bug.cgi?id=58432

admin conn admin conn user conn
| | |

+--v-------+ +---v------+ +---v------+
| OpenLDAP | | OpenLDAP | | OpenLDAP |
+----------+ +----------+ +----------+

The authorization checks are enabled per LDAP connection (and additionally globally per
service):

It can be enabled in UMC and UDM REST API (not yet in UDM-CLI - we just didn’t integrate
a UCR variable for it, can possibly just be enabled there as well) via the following UCR variables:

• ucr set directory/manager/web/delegative-administration/enabled=true
• ucr set directory/manager/rest/delegative-administration/enabled=true

Via directory/manager/rest/delegative-administration/excluded-users/.* one can
specify users which are excluded from these authorization checks, e.g. necessary so that
cn=admin stil works.

TODO : implement the same for UMC. TODO : implement the same for directory/manager/rest/delegative-administration/excluded-groups/.*

Configuration is still locally and not distributed somewhere. Can be configured via:

/usr/share/univention-directory-manager-tools/univention-configure-udm-authorization
--store-local prune /usr/share/univention-directory-manager-tools/univention-configure-udm-authorization
--store-local create-permissions /usr/share/univention-directory-manager-tools/univention-configure-udm-authorization
--store-local create-default-roles

A language to describe the policy rules has been implemented: a UDM domain specific language
(DSL) following an extended BNF grammar. This is parsed by a LALR (Look-Ahead Left <-
Right) parser.

The default rules are in: /usr/share/univention-directory-manager-modules/udm-default-authorization-roles.policy
Currently rules for the same role must be defined in the same .policy file. Syntax high-
lighting for this file (e.g. via vim) can be enabled, see toolshed:vim/syntax/udm.vim and
vim/ftdetect/udm.vim

Example:

Domain Administrators
access by role="udm:default-roles:domain-administrator"

description="Domain Admins are allowed to do anything in the whole domain"
to objecttype="*"

grant actions="*"
grant properties="*" permission="write"

Further policies can be activated via: /usr/share/univention-directory-manager-tools/univention-configure-udm-authorization
--store-local create-roles --config /etc/....policy

UDM delivers the following default roles:

• Domain Administator (can do anything): udm:default-roles:domain-administrator
• Domain User (can read himself): udm:default-roles:domain-user
• Self Service Profile view (can write self service properties): udm:default-roles:self-service-

profile
• Organizational Unit Administrtor (can administate users and groups in a OU): udm:default-

roles:organizational-unit-admin (only in combination with the udm:contexts:position

S. 3/27

context)
• Helpdesk Operator (can reset passwords): udm:default-roles:helpdesk-operator
• Linux Client Mananger (can create computers/linux accounts): udm:default-roles:linux-

ou-client-manager

The default roles are not attached to the corresponding groups yet.

For users with these roles, LDAP ACL’s can be added which prevent granting permissions
to anything. By default every user in UCS is able to read the whole contents of the LDAP
directory (without sensitive data such as password hashes):

access to *
by dn.base="uid=ou1-admin,cn=users,dc=example,dc=org" none stop
by * +0 break

Python API sketch

univention.admin.authorization:

class Authorization:

def enable(self, get_privileged_connection_callback):
... # enables authorization globally on the service

def inject_ldap_connection(self, ldap_connection):
... # transforms user LDAP connection into connection with admin powers

def is_create_allowed(self, obj):
...

def is_modify_allowed(self, obj):
...

def is_rename_allowed(self, obj):
...

def is_move_allowed(self, obj, target):
...

def is_remove_allowed(self, obj):
...

def is_receive_allowed(self, obj):
...

def filter_search_results(self, results):
...

def filter_object_properties(self, obj):
...

S. 4/27

How to initialize a service to enable the authorization engine?

import univention.admin.uldap
from univention.admin.authorization import Authorization

def init_the_service()
lo_admin = univention.admin.uldap.getAdminConnection() # e.g. cache somehwere, and handle reconnections
univention.admin.authorization.Authorization.enable(lambda: lo_admin)

get user connection
lo = univention.admin.uldap.access(

binddn=f'uid=ou1admin,cn=users,{ucr["ldap/base"]}',
bindpw='univention',
base=ucr['ldap/base']

)
po = position(lo.base)
lo = univention.admin.authorization.Authorization.inject_ldap_connection(lo) # extend user connection to have admin powers

def main()
init_the_service()
users = univention.admin.modules.get('users/user')
univention.admin.modules.init(lo, po, users)

user = users.object(None, lo, po,)
user.create()

This injects the user LDAP connection, so that it provides lo.authz_connection, which can
be used for certain LDAP operations. In general the regular user connection is passed to every
other function call like when receiving other UDM objects.

Enforcement in Object logic

Only when doing direct LDAP operations, the admin connection has to be used, for example
the simpleLDAP.create() method uses it like:

class object(simpleLDAP):

def create(self):
if not self.lo.authz.is_receive_allowed(self):

raise noObject()
...
if not self.lo.authz.is_create_allowed(self):

raise permissionDenied()
self.lo.authz_connection.add(self.dn, self.addlist)
...

Examples of a filtered search

1. using a LDAP search, searching for all attributes (assuming the results are only users/user
objects!)

S. 5/27

user_mod = modules.get('users/user')
user = user_mod.object(None, lo, po)

results = lo.search_filtered({'module': user.module}, user_filter, user_base)

2. using a LDAP search with DNs as result set (assuming the results are only users/user
objects!)

user_mod = modules.get('users/user')
user = user_mod.object(None, lo, po)

results = lo.search_dn_filtered({'module': user.module}, user_filter, user_base)

Implications on UDM usage

Error handling now must be extended everywhere to catch e.g. permissionDenied and noObject.
Authorization checks and object or property filtering needs to be done manually in various
places, to not introduce priviledge escalation or information disclosure vulnerabilities. Ex-
ternal hooks/modules/syntax classes must implement this manually. The LDAP connection
instance lo provides therefore the new members authz (providing authorization methods),
authz_connection (being a privileged cn=admin connection) and other utility functions (which
might change in the future).

The use of authz_connection can be compared with encoding/decoding of data. The
lo.authz_connection must be used for all operations like get_schema(), add(), modify(),
rename(), delete(), getPolicies(), get(), getAttr(), search() and searchDn().
The lo connection must be used for all other operations, e.g. passing to UDM objects
univention.admin.modules.lookup(lo, ...), univention.admin.modules.get("users/user").object(...,
lo, ...) or univention.admin.modules.init(module, lo, ...)

Additionally the methods get(), getAttr(), search() and searchDn() must be guarded,
to filter the results for information the user is not allowed to read! E.g. alternatives are
lo.search_filtered() and lo.search_dn_filtered().

In general it’s very important that things raise the same exception signature like LDAP would
do, if no permissions exists, otherwise with that information leak it would be possible to find
out which objects exsits, especially if the user has control over the used LDAP filter, it can be
used to obtain arbitrary domain data.

The implementation still has several possible vulnerabilities:

• probably not all endpoints of UMC and UDM REST API are covered
• various endpoints which offer the possibility to provide an LDAP filter or LDAP search

base + scope, which doesn’t respond equally to if the object doesn’t exists in LDAP
• information disclosure in various methods where the behavior differs from LDAP. most

known places we e.g. raise noObject instead of permissionDenied. leftover: whole tree
hierarchy must be checked.

• information disclosure via specially crafted LDAP DNs might allow this (e.g. uid =
Administrator is equal to uid=Administrator). This is currently handled safely. But if
we switch to real Guardian and evaluate this with rego, it will probably vulnerable.

• time based side channel attacks might be possible now, and guaranted possible if there is
HTTP communication involved.

• UDM modules which implement lookup() on their own, instead of using the generic
variant e.g. computers/ipmanagedclient.

S. 6/27

• DNS and DHCP objects if access to computers is allowed I don’t consider those information
secret!? They could also be fetched via a DNS request.

• UDM modules with a defect hasChange() method
• pseudo-properties without LDAP attribute, might be not correctly detected by
hasChange()

• UDM objects which aren’t open()ed, when the open logic adds state
• It’s possible to “touch” any object, by sending a modify request without changed properties.
• All marked places in the UDM source code matching: git grep 'information
disclosure'

• probably many other things

From product management we were not allowed to implement this feature by creating mappings
to LDAP ACLs, which would make us safe against all this (and would have been a lot easier to
implement). Therefor we have to address them somewhen.

Other vulnerabilities are possible in the rules itself. Creating rules requires knowledge about the
object structure. To protect against privilege escalation we must prevent write access to (certain
values of) properties like users/user or groups/group:password,serviceSpecificPassword,guardianRoles,guardianMemberRoles.
Also certain pathes in homeSharePath and other attacks are imaginable.

Other wrong role definitions can lead to information loss, e.g.: If the actor user has access to
read group XYZ and another actor modificator of groups has not, the groups will be removed.

The place of implementation is also kind of wrong: Authorization checks are done very early in
modify() / create() / etc to prevent that the _ldap_pre_create() / _ldap_pre_modify()
logic, which already does things like moving / creation / modification of refrenced objects, can
be executed by any arbitraty actor, not having the required permissions. But exactly that logic
often sets default values, modifies states, executes hooks, etc which is then not covered by the
authorization checks. Maybe it would be best to just check the permissions twice.

Requirements for Attribute Based Access Control authoriza-
tion in UDM

• The use of LDAP ACL’s was declined by the Product Management (strategic decision).
• Authorization for UDM based on objects types and properties, not LDAP attributes

strategic decision
• Authorization based on

– the role (guardianRoles) of the actor
– the DN (position) of the target

• Probably a future need for “value-based” authorization (e.g. username can not be root,
group memberships can not be Domain Admins, a set of certain guadianRoles are al-
lowed/declined)

• Privileged LDAP connection for access to database after authorization (not a user connec-
tion)

– This introduces a security risk for UDM extensions. We can not technically enforce
that Python code from 3rd parties do the authorization part.

∗ Product Management decision: we can ignore this for now, it is the re-
sponsibility of the operator and/or the “manufacturer” to ensure that 3rd party
extensions work correctly

∗ Furthermore we want to provide the possibility to extend UDM in a declarative
way (e.g. via YAML) to get rid of custom Python business logic

S. 7/27

• Customers can create roles and assign permissions for those roles
• If possible, the Guardian should be used

The requirements and use cases are still vague and have to be further clarified. We need to
support three roles: OU Administrator, Computer Join Operator, Helpdesk Operator.

Certain knowledge about the product helps to implement this:

• The security implications of certain attributes
• The current UCS LDAP ACL’s
• The LDAP ACLs of UCS@school
• The requirements of the self service

With this in mind (and considered), we know that the product should go into the direction that
these same things can be realized with UDM permissions.

What restrictions does UDM require?

• no writing to users/user:guardianRole, groups/group:guardianMemberRole
• no reading of users/user:password, users/user:serviceSpecificPassword (but

maybe write)
• sensitive rules about users/user: overridePWLength, overridePWHistory, shell,
unixhome, locked/unlock, disabled, gidNumber uidNumber.

• restrict the possible values for primaryGroup and groups (don’t allow to put into Domain
Admins)

• . . . to be continued . . .

Integration of UDM Authoriztion using the Guardian con-
cept
Guardian is an Authorization Information Point, meaning it doesn’t enforce any policies. UDM
is the layer which enforces the rule evaluation.

Currently Guardian has many drawbacks, so that we implemented layers which abstract away
Guardian concepts and implementation details. Those are now further explained.

Permissions & Capabilities

UDM by default provides permissions:

• A namespace for each UDM module: udm:{module}:

• Capabilities for general actions of a all UDM modules (if the module supports the action):

– Capability: condition objectType == "users/user" grants the permission
udm:{module}:create allows to create objects of this module

– Capability: condition objectType == "users/user" grants the permission
udm:{module}:modify allows to modify objects of this module

– Capability: condition objectType == "users/user" grants the permission
udm:{module}:rename allows to rename objects of this module

– Capability: condition objectType == "users/user" grants the permission
udm:{module}:remove allows to remove objects of this module

S. 8/27

– Capability: condition objectType == "users/user" grants the permission
udm:{module}:move allows to move objects of this module

– Capability: condition objectType == "users/user" grants the permission
udm:{module}:search allows to search objects of this module

– Capability: condition objectType == "users/user" grants the permission
udm:{module}:read allows to read a specific object of this module

– Capability: condition objectType == "users/user" grants the permission
udm:{module}:report-create allows to create a report for objects of this module

• For every UDM property of all UDM modules:

– Permission udm:{module}:read-property-{property} allows to read the property
value

– Permission udm:{module}:search-property-{property} allows to use the property
in a search filter

– Permission udm:{module}:write-property-{property} allows to write the prop-
erty value in a create or modify action

– Permission udm:{module}:readonly-property-{property} restricts the write per-
missions back to read permissions again

– Permission udm:{module}:writeonly-property-{property} restricts the permis-
sion to write without having read or search permissions

– Permission udm:{module}:none-property-{property} restricts the write or read
permissions back to none permissions again

• Wildcard-Permissions:

– For the realization of a simple Domain Administrator role, wildcard permissions
exists. They MUST NOT be used otherwise.

– ~~Permission: udm:{module}:* allows any of the above UDM module actions~~
(overcomplicates Guardian handling)

– Each of the per-property permissions above allows to specify * as property name,
which applies to all properties the module provides.

– This is security critical and then must be combined with further restrictions, for
example:

∗ udm:{module}:write-property-* +
∗ udm:{module}:readonly-property-guardianRoles +
∗ udm:{module}:none-property-password or udm:{module}:writeonly-property-password

Differentiation of search vs read permissions

What would it help to differentiate a search permission, while we already have a general read
permission to retrieve a specific single object?

1. UDM modules support a optional search operation. If no permissions for searching exists
for the specific module, the search form is not rendered (but opening specific objects
is possible e.g. via the LDAP directory tree). The same applies to the report-create
permission, which makes the button in the UI (in)visible.

2. Another use case could be, that users should not get the permissions to open a certain
object type, while the user object itself allows to choose objects of such objects in a selection
list. Filling the selection list then requires the permission for the search operation.

3. We could differentiate wheather a property can not be used in a search filter, e.g. prohibit
searching for password=*, fetchmailPassword=*, etc.

S. 9/27

Handling of UDM extensions e.g. Extended Attributes

After the installation of an UDM Extended Attribute, or an app which provides UDM Modules
or properties, new permissions and capabilities must be registered in Guardian. It might
be necessary to adjust default roles. Especially regarding wildcard permissions, which are partly
resolved into a lookup of all modules and properties, require the adjustments of default roles
e.g. so that the Domain Administator is still allowed to act on every object.

The rule re-creation can currently be achieved via: /usr/share/univention-directory-manager-tools/univention-configure-udm-authorization
"$@" create-permissions

Conditions provided by UDM

Permissions are granted by Capabilities, which can restrict the permissions by adding certain
Conditions.

UDM provides the following conditions:

• udm:conditions:target_position_in with parameters position=, scope= which re-
stricts the permissions to the given LDAP DN position using one of the LDAP scopes
one, base, sub.

• udm:conditions:target_position_from_context with parameters context=,
scope= which restricts the permissions to the LDAP DN position read from the given
context using one of the LDAP scopes one, base, sub.

• udm:conditions:objecttype_equals with parameters objectType= which restricts the
action to any UDM modules name.

Not fully implemented / untested: (

• udm:conditions:target_property_value_compares with parameters property
operator value, where operator is one of: ==, !=, regex-match, regex-nomatch, ==-i,
!=-i, regex-match-i, regex-nomatch-i

• udm:conditions:target_property_value_dn_compares with parameters
property operator value, where operator is one of: ==, !=, ==-i, !=-i, subtree,
onelevel, subtree-i, onelevel-i.

• udm:conditions:property_equals with parameters property= which restricts the ac-
tion to any UDM modules property name. Must be used with the AND operator and the
previous condition.

• udm:conditions:action_equals with parameters action= which restricts the action
to any of create, modify, rename, remove, move, search, read, etc.

)

Default example roles

UDM provides some default roles, which are using some builtin capabilities:

• udm:default-roles:domain-user allows to read everything non-sensible
• udm:default-roles:domain-administrator allows to write everything
• udm:default-roles:organizational-unit-admin allows to be admin of a certain OU

given by its context
• udm:default-roles:helpdesk-operator only allowed to set passwords of users under-

neath of a certain OU given by its context

S. 10/27

• udm:default-roles:computer-join-administrator allows to join computers into the
domain, and set their corresponding password

• udm:default-roles:self-service-profile allows to modify the properties of the own
user object specified in UCR variable self-service/udm_attributes

Wildcard permissions

Wildcard permissions allow to not be required to specify a whitelist of all allowed properties
to have access to. UDM is a dynamically extensible framework, where new properties can be
added 1) via additional schema extensions and 2) on the fly via UDM “extended attributes”.

Supporting wildcard permissions adds a security risk. If customers need to copy our default
capability definitions for an example role and in some errata update we introduce new security-
relevant properties e.g. another service specific password, customers need to adjust their access
defintions prior to the software upgrade. Otherwise a vulnerability time window exists, where
access is allowed to these attributes, even if the customer references (in a currently impossible
way) our default policies.

Alernative concept to wildcard permissions would be something like a “permission bundle”, where
we group certain properties, e.g. default-users-user-properties, custom-users-user-properties,
sensitive-users-user-properties.

The conflicting issue: We have to offer security by default and usability and maintainability of
rules for the customers.

Define the role of the tree structure / Comparision with LDAP ACLs

In the whole concept we ignore that a directory service is a tree-based directory. In LDAP, in
order to be able to read an object, you need read or search rights to the entry attribute on
all parent objects and if you want to modify the object, you need read rights to the children
attribute on the parent object.

Example: to find and read uid=foo,cn=bar,cn=baz,cn=users,dc=example,dc=org at least
the following access rights are required:

• read on uid=foo,cn=bar,cn=baz,cn=users,dc=example,dc=org attr=entry,
objectClass, etc

• search on cn=bar,cn=baz,cn=users,dc=example,dc=org attr=entry (wenn man hier
z. B. add auf ein Kindobjekt machen will, dann auch write auf children)

• search on cn=baz,cn=users,dc=example,dc=org attr=entry
• search on cn=users,dc=example,dc=org attr=entry
• search on dc=example,dc=org attr=entry

Or you need to know exactly the object DN, then you can read it if you have the corresponding
permissions on the object and parent. But how do we want to realize the LDAP directory
tree module, if you cannot see intermediate objects? Leave it to the customer to create all the
permissions?

A regular LDAP search with the base=dc=example,dc=org for all objects with additional
Guardian filtering will yield results where the inter-between objects might be missing. E.g. it will
yield cn=baz,cn=users,dc=example,dc=org and uid=foo,cn=bar,cn=baz,cn=users,dc=example,dc=org
but not cn=bar,cn=baz,cn=users,dc=example,dc=org.

Shouldn’t this behave like LDAP?

S. 11/27

Known problems with Guardian
The Guardian component currently has several drawbacks, which has to be solved or circumented,
so that UDM is able to realize a authorization concept by using Guardian.

General/Conceptual problems

Ambiguity of implementation

“There should be one – and preferably only one – obvious way to do it.” Zen of
Python

Guardian allows several ways to implement a use case and its documentation doesn’t give clear
answers how things are supposed to be solved.

One can implement a:

• udm:udm:users-user-{action} permission, where action is e.g. one of create, modify,
remove, rename.

• udm:udm:{action} permission, which must be used in combination with a condition,
checking the objectType == 'users/user'

• udm:udm:action permission, which checks in multiple conditions that action ==
'modify' and objectType == 'users/user'

One can implement a:

• udm:udm:users-user-write-property-description permission
• udm:udm:write-property-descritpion permission, which must be used in combina-

tion with a condition, checking the objectType == 'users/user' and property ==
'description'

• udm:udm:action permission, which checks in multiple conditions that action ==
'modify' and objectType == 'users/user' and property == 'description'

One can implement a:

• Portal Tile view based on (virtual) roles present in the target
• Portal Tile view based on the app name in the permission string

Change request: The Guardian manual should clearly state in which way things should be
implemented and tell it’s possible advantages and disadvantages.

Capabilities are bound to roles

When we want to implement customer use cases in a generic reusable fashion, by providing exam-
ples how to realize them, we would create explicit permissions (e.g. udm:udm:users-user-modify-property-description).
That would serve as a clear API and allows easy re-use by a customer. If we want to implement
generic capabilities, which would serve instead as the API, customers need to copy the whole
structure and if we change something in our required examples, they need to adopt it equally
to their copies. Capabilities are bound to a specific role. That’s a problem and doesn’t allow
re-use but requires hard-copying. To be useable, a capability defintion should stand on its own,
not yet assigned to any role. Maybe some concept like a capability bundle could enhance this.

Change request: The Guardian should remove the role assignment from the capability and
introduce a different layer in the Management API to link (multiple) capabilities to (multiple)
roles.

S. 12/27

Capabilites vs Permissions: What is API, what is opaque?

Guardian introduces all these different concepts but doesn’t clearly state, which objects are
supposed to be created by an App and which are supposed to be created by an administrator.
The Management UI just shows all of them.

Permissions can grant something, while in practical use, they often require specific conditions to
be bound to them. E.g. a app:actions:create permission must be used in combination with
a condition if type == "teacher". This permission with a condition builds a capability to
create a teacher.

Of course there could be a permission app:teacher:create, but at least UCS@school doesn’t
use it this way and discourages to use it like this. But Guardian currently has the drawback,
that as mentioned above, capabilities are bound to roles. So, by design, they are not re-useable
and lead to copy & paste, which then makes them not-evolvable.

Customers should not get the cognitive load to understand both concepts. We could learn from
FreeIPA how to design this very simple (KISS principle), they just differentiate between role,
permission and privilege. See Free IPA Permissions.

It doesn’t feel correct, that permissions create a API. Managing single permissions to a UDM
properties can’t evolve. Only pre-defined permission sets by use can do this.

Change request: Guardian should throw away the concept of capabilities and provide
Privileges. which are the external API and referenced by customers. Apps provide these
priviledges. Permissions should be nearly opaque - implementation details which might be
changed by the app at any time.

Restricted charset

Guardian restricts the charset of permissions (basically: [a-z0-9]). UDM modules, properties
and extended attributes allow arbitrary characters. We need to create a mapping of UDM
module and UDM property names.

• The mapping is irreversible when we need to strip characters (Increases the complexity
very much in handling this).

• The mapping is error prone
• For Administrators this is also intransparent, as they have to remember pwdChangeNextLogin

and pwdchangenextlogin.

1. It’s not possible to use users/user or pwdChangeNextLogin.
2. It would be nice to use the : as separator for concepts in permission names

e.g. {app}:{namespace}:$module:$action:$thing.
3. It would be nice if the whole character set of LDAP DN’s is allowed (see later about

“Contexts”).

Workaround: lowercase all values and replace special chars with - and nothing

Change request: The Guardian should allow for app names, namespaces, permissions and
in contexts all printable ASCII characters, except for the separator &.

Capability namespace binding restricted to the permission namespace

Guardian has a concept of app:namespace:thing for permissions, capabilities, roles,
etc. In UDM it would have been nice to use the namespaces for the UDM modules. e.g.:
udm:users/user:... would allow things like udm:users/user:{action}:{property}:{details}.

S. 13/27

https://www.freeipa.org/page/V2/Permissions

But capabilities are bound to be in the same namespace as its permisssions. So it is not possible
to create a capability which grants permissions for more than one UDM module.

Workaround: Create a capability for each namespace (UDM module), so that a domain
adminstrator e.g. needs to get over 100 capabilities assigned.

Change request: The Guardian should allow capabilities - to reference permissions
outside of the namespace the capability is created in. - to be cloned, so that they can be
modified more easily interactively. - to be inherited from another capability, and then the
sub-capability can add further conditions (linked with any relation) which are linked with
the super-capability via AND.

The problem realizing this, is that the Guardian Authorization Engine cannot just search for all
capabilities in a certain namespace anymore but must inspect all capabilities, which include
permissions of a given namespace.

No dynamic contexts allowed

While we would benefit from dynamic permissions, because UDM properties and modules can
be added dynamically, having such functionality is crucial for Contexts. If we want to use the
context Guardian concept we want to extend permissions so operations are e.g. restricted to
targets underneath of a certain OU.

1. A context cannot have the full characterset of a LDAP DN (basically also
restricted to [a-z0-9]). So we cannot add a context udm:udm:ou-admin &
udm:contexts:ou=ou2,dc=example,dc=org

2. Every context must be registered in guardian. This requires that everytime a OU is
created or removed, the context must be added/removed in Guardian. A listener module
would have to do this, which adds unnecessary overall complexity to the whole system.

A concept of named context would be good, so that the value is freely chosen but the
context name is registered in guardian. One could name a context udm:contexts:ou
and it’s value would be ou=My school 1,dc=example,dc=org so that the resulting role
string would be udm:udm:organisatzional-unit-administrator&udm:contexts:ou=ou=My
school 1,dc=example,dc=org.

It would allow be nice if multiple contexts could be given per role, not just only one. This could
be realized by separating them by &.

→ Values for contexts should be free-form strings, without having to be registered in Guardian.

Workaround: Use the context name, rewrite the roles to strip out parts of the context and
gather the data hardcoded in UDM code and provide them via Guardians extra-arguments

Change request: The Guardian should allow to register contexts and allows assigning
free-from string values for them in the role string by separating them via the first =
(e.g. udm:default-roles:organisatzional-unit-administrator&udm:general:ou=ou=My
school 1,dc=example,dc=org).

Change request: The Guardian should allow to specify multiple contexts in a role string,
separated via & (e.g. udm:roles:foo-role&context1&context2).

No removal in Guardian possible

The guardian management API and UI doesn’t allow to remove any created object like app,
namespace, role, context, permission, condition. Only a capability can be removed.

S. 14/27

Change request: The Guardian Management API should implement the endpoints to remove
Guardian objects (and the UI should use it). Fix univention/dev/projects/authorization-
engine/guardian#262

Permission granting: no negative permissions

Guardian allows to give permissions but has no way to reduce already given permissions by a
further capability (additive permission management without subtractive permission manage-
ment).

This is fundamental for our requirements. UDM is dynamically extensible and is also evolving,
so that we sometimes add new properties.

1. Guardian requires for each changeable property a permission to be defined.
2. Guardian doesn’t have a wildcard permission granting concept
3. If we introduce a wildcard concept, we cannot use the check-permission endpoint anymore:

We have to do the whole rule evaluation in UDM.
4. If we introduce a permission-restriction-afterwards concept we cannot use the check-

permission endpoint anymore: We have to do the whole rule evaluation in UDM, see the
below realization idea how Guardian could support it.

5. If we don’t have a wildcard concept, we have to adjust existing rules on every software
upgrade / extended attribute.

6. If we don’t have a wildcard concept, we will send very large amount of permissions strings
on each rule evaulation check.

Drawbacks of negative permissions:

• If a user contains two roles, e.g. helpdesk-operator which grants access to
users/user:write-property-password and another OU specific role which disal-
lows access via users/user:none-property-password, the functionatliy of the first role
would be destroyed: In some cases this could mean that you have less permissions then
before, which is not something Administrators would expect. This can partly be solved by
adding specific conditions to the capablities which let the permissions only apply to e.g. a
certain subtree.

Implementation idea: Guardian could also provide parameters to check for the absence of
permissions.

permission_check(
general_permission=["users-user:modify"],
target_permission=["users-user:write:description"],
not_target_permissions=["users-user:readonly:description"],
not_permissions=["users-user:none:description"]

)

Permission lifecycle

As pointed out before, UDM is a evolving system over time. From time to time, we add
new UDM properties or new UDM modules. Or customers do it via extended attributes. Or
apps do it via their joinscript / app installation. We most recently had the problem, that
the existing LDAP ACL’s prevented us from doing certain changes in UDM regarding the
univentionObjectIdentifier.

UCS development takes place in erratum-updates, even for new features. We don’t have a

S. 15/27

way to signal customers that they need to change their existing role set, after we added a new
property. Not having the permission to write this attribute will cause the object creation to
fail. UDM REST API and UMC require the full data representation of the new object to be
send. Customers will also not see the reason for it. The error message will just be permission
denied withtout the information which attributes are not writeable. Guardian will not provide
this information. Maybe when looking up the log files. This should not end in a support case.
UCS cannot change the defined roles of customers.

Guardian has no concept for the permission lifecycle.

Implementation idea: If Guardian would provide a feature for re-useable sets of permission
and capabilitiy bundles (privileges), which serve as an API, UDM could provide usefull defaults.

No language to describe rules: just HTTP API endpoints with JSON payloads

We expect that customers don’t just want to define their policies by clicking them together in the
Guardian Management UI but to roll out a deterministic set of rules. This requires a data format.
JSON is (usually) not a data format expected to be written by humans/administrators but
generated by software. YAML is more common to be written by Dev-OPs teams. Administrators
probably also don’t want to write HTTP clients (which then must be maintained as well) to
push policy rules into the system.

My (@fbest) personal opinion is, that realizing the Guardian configuration via the Guardian
Management API as a HTTP service is a misconception. It adds a new custom specific
JSON data format, another Univention-Invention, which must be learned and implemented by
clients/ISVs/customers. We event don’t achieve to make use of the power of OpenPolicyAgent.

Guardian defines the semantic of a language by introducing concepts like “permissions”, “capa-
bilities”, “conditions”, “roles”, “contexts”, etc. Guardian provides no real syntax to realize these
concepts. Instead it offers unfinished JSON based HTTP API endpoints with (over-)complex
data structure. See also Guardian API design: extensive data format.

Other access control systems make their rules describable via a language, such as YAML, URI,
ACI (objects in the directory Active Directory), LDIF or custom DSLs (e.g. LDAP ACLs).
Guardian allows to describe rules as capabilities, where each capability is like the following
JSON format POSTed to the guardian-management-api.

A capability grants permissions to a specific role based on optional conditions:

{
"name": "groups-group-creation", # must be in the same namespace as the permissions it grants
"display_name": "Allow the role udm:udm:groups-group-creator to create UDM groups/group objects in the global groups default container without any restrictions.",
"role": {

"app_name": "udm",
"namespace_name": "roles",
"name": "groups-group-creator"

},
"relation": "AND", # operator in which conditions are linked
"conditions": [

{
"app_name": "udm",
"namespace_name": "conditions",
"name": "objecttype-equals",
"parameters": [

S. 16/27

{"name": "objectType", "value": "groups/group"}
]

},
{

"app_name": "udm",
"namespace_name": "conditions",
"name": "position-in",
"parameters": [

{"position": "cn=groups,dc=example,dc=com", "scope": "subtree"}
]

},
{

"app_name": "udm",
"namespace_name": "conditions",
"name": "action-equals",
"parameters": [

{"name": "action", "value": "create"}
]

}
],
"permissions": [

{
"app_name": "udm",
"namespace_name": "udm",
"name": "create"

},
{

"app_name": "udm",
"namespace_name": "udm",
"name": "write-property-name"

},
...

]
}

This data format is bloated, not changeable, not directly focused on what it offers, not inutitively
understandable. Changing the underlying implementation will change everything.

UDM should abstract away these implementation details and provide a easy to understand
format, where this HTTP API JSON syntax is created from.

We assume customers don’t want to write such error prone JSON blobs. We should offer
configuration formats and ways which are easy to write, have no redundancy, focus on being
intuitivly understandable, align to known concepts. So what are configuration formats which
are nearly standards, and easy to parse?

Example: One example to describe the default rules for our uses cases is the following YAML,
which are 100 lines of YAML instead of (the current) 24.362 lines of JSON within 143 files.
This is very specific to the terminology and concepts of Guardian. It could be used a a general
purpose configuration format for Guardian.

conditions: # named reusable conditions
users-user-objects:

S. 17/27

udm:conditions:target_object_type_equals:
objectType: "users/user"

groups-group-objects:
udm:conditions:target_object_type_equals:

objectType: "groups/group"
object-access-underneath-own-ou:

udm:conditions:target_position_from_context:
scope: "subtree"
context: "udm:contexts:ou"

target-is-self:
guardian:builtin:target-is-actor:

permission-sets: # named permission bundles (can be emulated or actually implemented in Guardian)
FYI: YAML allows references itself, which we can additionally use of permission sets wants to reference the contents of other permission sets
allow-sensitive-users-user-write:

- "udm:users/user:read-property-*"
- "udm:users/user:write-property-*"
- "udm:users/user:none-property-password"
- "udm:users/user:none-property-serviceSpecificPassword"

allow-sensitive-groups-group-write:
- "udm:groups/group:read-property-*"
- "udm:groups/group:write-property-*"
TODO: restrict on sensitive defaults

allow-all-read:
- "udm:users/user:read-property-*" # my lazyness to not list all permissions here
- "udm:groups/group:read-property-*" # my lazyness to not list all permissions here
- ... # further lazyness for the object types

allow-all-write:
- "udm:users/user:read-property-*"
- "udm:users/user:write-property-*"
- "udm:groups/group:read-property-*"
- "udm:groups/group:write-property-*"
- ... # further lazyness for the object types

capabilities: # raw capabilities suitable for re-use/reference, suitable as API for customers
udm:generic: # namespace

users-user-ou-write:
displayname: "Organizational Unit Admins can administrate all users/user objects in their OU"
grants-permissions:

- allow-sensitive-users-user-write
conditions:

AND:
- users-user-objects
- object-access-underneath-own-ou

groups-group-ou-write:
displayname: "Organizational Unit Admins can administrate all groups/group objects in their OU"
grants-permissions:

- allow-sensitive-groups-group-write
conditions:

S. 18/27

AND:
- groups-group-objects
- object-access-underneath-own-ou

allow-everything:
displayname: "Allow everyting! Use carefully, only for domain admins!"
grants-permissions:

- allow-all-write

allow-self-service-profile-write:
displayname: ""
grants-permissions:

- allow-sensitive-users-user-write
conditions:

AND:
- target-is-self

capability-bundles: # re-useable capability bundles realizing one use case
udm:generic: # namespace

organizational-unit-administration:
- udm:generic:users-user-ou-write
- udm:generic:groups-group-ou-write

domain-administration:
- udm:generic:allow-everything

domain-user:
- udm:generic:yet-to-be-defined-allow-something

self-service-profile-administration:
- udm:generic:allow-self-service-profile-write

role-capability-mapping:
udm:default-roles: # namespace

domain-users:
displayname: ""
capability-bundles:

- udm:generic:domain-user
domain-administrator:

displayname: ""
capability-bundles:

- udm:generic:domain-administration
self-service-profile:

displayname: ""
capability-bundles:

- udm:generic:self-service-profile-administration
organizational-unit-admin:

displayname: ""
capability-bundles:

- udm:generic:organizational-unit-administration
capabilities: [] # no further ones

helpdesk-operator:
displayname: ""

S. 19/27

capability-bundles: [] # TODO
capabilities: [] # TODO

linux-client-join:
displayname: ""
capability-bundles: [] # TODO
capabilities: [] # TODO
permissions: [] # TODO: idea to allow permissions without a capability (auto-create capability), as it doesn't require any condition

Example: Another example is this UDM domain specific language (DSL) in extended BNF
grammar inspired by LDAP ACLs. It is easily parseable by a LALR parser, intuitively
understandable, human read- and writeable. Most of Guardian concepts are left out here, except
for the conditions.

named-condition "is-self"
condition="guardian:builtin:target_is_self"

named-condition "in-global-users-container" # unused example
condition="udm:conditions:target_position_in" # the guardian condition name
parameters position="cn=users" scope="subtree" # any key value pair which the guardian condition requires

Organizational Unit Administrators
access by role="udm:default-roles:organizational-unit-admin" context="udm:contexts:position"

description="Organizational Unit Adminstrators can administrate users and groups in their OU"

to objecttype="container/ou" position="{context}" scope="subtree"
grant actions="search,read"
grant properties="*" permission="read"

mail/domain permission in global mail container
to objecttype="mail/domain" position="cn=domain,cn=mail,{ldap_base}" scope="subtree"

grant actions="search,read"
grant properties="*" permission="read"

user permissions in OU
to objecttype="users/user" position="{context}" scope="subtree"

description="Write user object in own OU" name="users-user-ou-write"
grant actions="search,read,create,modify,rename,remove,move"
grant properties="username,lastname,firstname" permission="write"
grant properties="password,serviceSpecificPassword" permission="writeonly"
grant properties="guardianRoles" permission="none"
grant properties="guardianInheritedRoles" permission="none"
grant properties="*" permission="write"

group permissions in OU
to objecttype="groups/group" position="{context}" scope="subtree"

grant actions="search,read,create,modify,rename,remove,move"
grant properties="name" permission="write"
grant properties="password,serviceSpecificPassword" permission="writeonly"
grant properties="guardianMemberRoles" permission="none"
grant properties="guardianMemberRoles" values="udm:default-roles:domain-users,udm:default-roles:ou-users" permission="write"
grant properties="*" permission="write"

S. 20/27

udm-default-authorization-roles.policy

Domain Administrators
access by role="udm:default-roles:domain-administrator"

description="Domain Admins are allowed to do anything in the whole domain"
to objecttype="*"

grant actions="*"
grant properties="*" permission="write"

Self service use cases
access by role="udm:default-roles:self-service-profile"

to objecttype="*" actions="modify" properties="jpegPhoto,e-mail,phone,roomnumber,departmentNumber,country,homeTelephoneNumber,mobileTelephoneNumber,homePostalAddress" if="is-self" grant-access="write"

Workaround: We are currently going with the second approach and transform this into
the required Guardian objects. This also helps us to abstract away the Guardian interface
implementation details, so that customers won’t see it.

No Caching possible: Capabilities are bound to targets

The API design of Guardian is to either fetch a “access granted (for given target): yes/no”
request or a “give me all permission strings granted to the given target”.

It differentiates between “target permissions” and “general permissions”. But in practice most
often only target permissions are suitable to be used, otherwise one cannot use any conditions.

If Guardian would be able to give the whole permissions which are poossible by an actor,
this result would be cacheable. Then we could eliminate a lot of request e.g. when a search is
performed twice. And we could use the cache in case Guardian, Keycloak or whatever component
is not available - even for a second during some joinscript run.

The permission system of UMC works that way, that it stores a cache of the granted permissions
locally for this case. This makes UMC usable even if no LDAP server is running. And this is an
important use case as in case of errors administrators go into the diagnostic module / software
update / etc to find out or fix the reasons.

Guardian concepts are too abstract

Guardian doesn’t know about basic things a target constists of, which most apps require to
implement, e.g. actions like CRUD or more, object types, properties, etc. It just leaves this up
to free-form permission strings. Every app in the end can define a own structure. Our company
should implement this for all apps in a uniform way.

Therefor the generic Management UI is also not suitable to be used. One must create another
UI frontend to realize these concepts so that an Administrator can click on “Is allowed to
create/modify” objects of type “teacher” and gets “write” permissions for propertes “name, . . . ”.

Security Impacts

Availability of UDM

Currently, UDM’s only dependencies are the OpenLDAP server and UCR DB (local file)
availability. Doing authorization via Guardian involves a lot more required components (single
points of failure): Keycloak, Guardian Authorization API, Open Policy Agent, PostgreSQL.
This opens the way up for:

S. 21/27

1. robustness issues

• if one component is not available, and this can happen often during server maintenance
and updates, the central UDM identity management is prevented

• do we have enough retry mechanisms to deal with this?

We had a support case which took weeks to solve because Keycloak couldn’t be reached.

2. security issues

• Denial of Service has a larger attack surface (attacking just Keycloak makes UDM unusable)
• Denial of Service of UDM affects the other services. Just throw enought requests against

various UDM instances to get the other components Co-DoSed.
• Overtaking one component via one vulnerability in the stack allows overtaking the full

domain

3. scalability issues

• the above systems are the security foundation of the domain, i.e. they must nor run on
memberservers or replicas but only on DC Primary and DC backup systems

4. cyclic dependency issues

• e.g. joinscripts
• guardian-management-api → guardian-authorization-api → UDM REST API → guardian-

authorization-api

Information disclosure

To prevent information disclosure, the whole implementation must return the same response
structure as LDAP would do it. E.g. LDAP says “No Such Object” if a search with a certain
search base is done. The cn=admin account, with which UDM then runs, has permissions to
read all those objects. The UDM interfaces must now raise the same exception and signature.
When it would say “Forbidden” instead or the output differs otherwise, a arbitraty user can
obtain any information. By combining search bases, search filters and search scopes a lot of
attack vectors are possible in every API endpoint and further down, as e.g. syntax classes expose
a lot of different possibilities.

This is very tricky to realize, it must be realized everywhere and it must be understood by every
further UDM developer so that things don’t break when evolving UDM.

The integration of Guardian will make UDM vulnerable to side-channel atttacks. If one measures
the statistical average time to get such a “no object” response, one can also differentiate wheather
a object exists or not. In combination with a LDAP filter, this attack can be made very fine
granular. Therefor we also have to do guardian requests for objects, which don’t exists at all. A
http request will add enough time to the response so that this gets a real attack vector.

For large environments doing a search with a base underneath of an object which returns
more objects than the configured sizelimit will raise an LDAP SIZELIMIT_EXCEEDED before any
filtering can happen, which will reveal that the object exists.

OPA/Rego doesn’t know LDAP DNs

In UDM we use the C library _ldap for LDAP DN comparisions to make correct comparisions,
as our customer environments use special characters like +, =, (, etc. Depending on the request

S. 22/27

and where data origins from we have different DN formats. e.g. uid = foo \+ bar,cn=users
is equal to uid=foo \2b bar,cn=user.

So our checks in OPA need to know these normalization rules when comparing DNs. This is
not only from a functional point of view important but also from the security perspective: See
the above paragraph; it is required to prevent that actors can enumerate valid LDAP DNs to
check if an object exists, they could just give a different DN representation and get different
permission results just because LDAP supports both but guardian wouldn’t.

We can normalize actor and target DN’s before sending them to Guardian, still it must be able
to handle special chars. And when it comes to value based comparisions this will break, as we
don’t have enough Code introspection possibilities in UDM to know if something is a DN or
another value. E.g. in OX some values are stored like $DN || foo || bar.

Guardian as Policy Information endpoint doesn’t add security to the whole system
architecture automatically

In some meetings there was the view, that as OPA is a industry standard and proven by large
companies, just integrating it will make our architecture more secure. OPA with Rego is a
language to easily write a permission system without side effects (clear input and output) and a
restricted environment. That’s great. But in the end, Guardian is the Policy Information Point
and UDM is the Policy Enforcement Point. Therefore the whole permission evaluation is done
in the client (UDM), which is more complexity than the whole logic happening in Guardian.

Guardian has no way to trace decisions

A BSI-Grundschutz requirement is that the rule evaluation can be easily traced in logfiles. OPA
can log all policy evaluations in detail but the configuration option for decision_logs is not
integrated in Guardian.

UDM logs all access granting in a structured way.

Guardian debugability

Guardian is the Policy Information Point, UDM is the Policy Enforcement Point so we have
two layers where something is decided. With Guardian as an external component involved the
debuggability of permission decisions gets hard. We cannot simply trace things in the docker
container.

Guardian API design: new/old state of targets not required for filtering

In the Guardian concept the target must always be a dictionary with a new and a old state.
While it’s not required, to always set a new state, this depends on the acutal conditions. For
some operations like filtering the search results, there is no old and new state - because the
state is equal.

Guardian doesn’t clearly document, which builtin conditions operate on which state of the target.
The whole new and old states should just be a client issue, as only they and the conditions give
meaning to it.

S. 23/27

Performance Impacts

Search results must provide full data to Guardian

We must provide full data, all targets e.g. the search results need to provide all properties and
all target roles and inherited roles (depending on the dynamic permissions/conditions). This is
not a per-se guardian problem but a general one with the allowed flexibility.

Guardian API design: extensive data format

The Guardian authorization & management API data format is very extensive, e.g. in-
stead of sending : imploded strings, it’s always a dictionary {'app_name': ...,
'namespace_name': ..., 'permission_name': }. This requires way more data transfer,
serialization and parsing.

Consider, that the whole JSON serialization and de-serialization in 3 components (UDM,
Guardian, OPA) will not be negligible.

TODO: evaluate a different JSON library than the one in the standard library.

UDM is synchronous

While the LDAP library supports asynchronity, our whole UDM code doesn’t use it and runs
synchronously. This also applies to the guardian rule evaluation, which are HTTP requests.
UMC and UDM REST API execute certain blocking operations in a thread, while other things
happen on the main thread. These other things are probably now partially blocking the main
thread. Daniel proposes to use greenlets. We cannot use the full potential of asynchronity until
UDM isn’t designed with asnyc functions.

A local rule evaluation is currently the better approach.

Rule evaluation stays on the client.

The logic to enforce the permissions in UDM requires way more code than the basic functionality
Guardian provides. Guardian with OPA is very fast but this doesn’t help when the post-
processing is done on UDM side. This means that the CPU intensive step stays on client side.
Scaling via multiple Guardian instances won’t help.

check-permissions vs get-permissions endpoints

Guardian basically only offers two endpoints. To realize our requirements we need them in
a combined way. We need to check certain general permissions, some target permissions and
receive the whole possible permissions (for reasons see above for wildcard-permissions and
afterwards-restrictions). This requires us to do always two requests, which are in the backend
doing the same logic but just return different results.

It gets even harder, that we cannot let the permissions checked when we have a search result with
a mixed set of objects, for example a search for computer objects will return Domaincontroller
Slave and Linux Client objects, with different properties. We cannot specify different permissions
we need to check per target. Guardian allows only to check all given permissions for all targets.
So we need to make multiple requests.

EDIT: This can (at least partly) be solved by not exposing the module name in a permission,
but via a additional check in the condition. This, of course, requires all conditions to be linked

S. 24/27

with the AND relation. With that, we can send mixed targets to the get-permission endpoint
and receive specific permissions for each of the target, in one request.

UDM actions do a lot of sub-actions

UDM actions do a lot of sub actions, especially when retrieving objects. We need to check if
read permissions for all read references exists so that we don’t expose information which is
usually not visible to the user.

This requires a lot of checks (via single requests) at different places for one action. UDM is not
designed to do a input representation → just store it in LDAP operation. It does a lot
of sub-operations. UDM Hooks will be even wilder.

Our use case is a secure implementation, not just a “actor can create a user there” and “actor
can receive this user”. And this must be specifyable by an Admninistrator. And we need to tell
the administrator, what secure is and what not, with good demo examples.

Management UI Usability problems

The Guardian Management UI is not suitable for the whole UDM domain specific permis-
sion/capability assignment. Daniel proposes:

a good UI will display one matrix per UDM module (attribute x permission). Then,
the user will not see thousands of permissions/capabilities, but only a few dozen.

So a new UI must be created to be able to work with it. This can by the way, very easily be
achieved via a simple UDM module without the need to write a new Javascript frontend.

Managment API bugs and issues

Changing conditions impossible

It’s not possible to change a condition, one just get’s an Internal Server Error.

Change Request: Fix univention/dev/projects/authorization-engine/guardian#258

Failed decoding of input JSON data

The Management API crashes permanently randomly due to broken error handling if the
Authorization API sends a non successfull response.

Change Request: Fix univention/dev/projects/authorization-engine/guardian#264

Unreachable API

Sometimes the Apache gateway says the system is not available: Read timeout: Nothing occurrs
in the logfiles.

Change Request: Fix univention/dev/projects/authorization-engine/guardian#259

Performance of Management API

Our joinscript took more than 35 minutes to create all the default permission strings for all
UDM object properties. Each call takes at least 250-1000 milliseconds. Re-running the joinscript
took 45 minutes, as Guardian only allows to either create OR modify a permission. UDM
provides many permissions for all the UDM modules:

S. 25/27

apps: 1
capabilities: 152
namespaces: 129
permissions: 11974
roles: 6

There is no PUT endpoint, which allows the creation or modification in one idempotent step.

Change Request: All objects in Guardian should support the idempotent PUT
endpoint, which creates the object in case it doesn’t exists otherwise modify it. Fix
univention/dev/projects/authorization-engine/guardian#265

When creating a permission, which already exists, 100 lines of Traceback are logged.

Change Request: Fix univention/dev/projects/authorization-engine/guardian#255

Simply storing all permissions on local JSON files was done in nearly 1 second (when not writing
debug messages to stdout). A mass-import of the whole structure would help to reduce the
performance costs here and would also make sure we always push a idempotent and consistent
state for our app “UDM”.

Change Request: Guardian should provide a configuration format, like described in example
1 of No language to describe rules, which just allows to push the whole state of an app in
a single request.

cyclic dependency problem

The guardian-management-api depends on the guardian-authorization-api, which in turn queries
the udm-rest-api, which in turn should query the authorization-api to allow access?

We can implement a solution in UDM which allows certain users (lile cn=admin) to bypass the
Guardian authorization.

Questions

• How should we solve all the guardian problems in a small time frame, where we have a lot
of other issues to solve while we also could just create a simple implementation of all this,
which doesn’t hinder us in the first step and get us going into a compliant solution?

• Do we need for security reasons to evaluate some permissions early in the service,
e.g. UDM REST API, UMC-UDM and UDM-CLI? E.g. adding a futher additional
layer: udm:udm-rest-api:create-users-user. Should this be achieved via namespaces
or via contexts? Or via extra-data and a condition?

• How to handle situations where one is not allowed to read all the groups of a user (e.g. not
the Domain Admins or not the OU2-Teacher group) but he wants to modify the user. The
client would send back the received groups and just remove the user from all the other
groups not allowed to see.

Conclusion

The core of Guardian is very simple, and re-implemented in 100 lines of Python Code plus
another 100 lines for UDM specific conditions.

We don’t see the cost-benefit ratio in using the Guardian:

S. 26/27

• Why should we use it, when we have to adjust and fix so many things, which requires
nearly a Guardian 2.0?

• Why should we use it, when it creates much overhead like sending a lot of strings see-saw?
• If we have to adjust so many things, we have to do in in a generic fashion and have

followup work like adjusting manuals, etc.
• Why should we adjust it in a generic way if we don’t know the exact use cases so it gets

usefull for everyone?
• Are the specific complex things UDM required usefull for every other guardian user or

just for UDM? does it give others any value?
• Does it make sense to change the Guardian just to satisfy the UDM needs?

Fixing all these things in Guardian requires more effort than implementing a UDM specific
ABAC concept, where rules are stored in LDAP, configurable via certain UDM modules and the
UI is automatically rendered by the existing frontend.

S. 27/27

	Documentation
	Current state of the implementation
	Python API sketch
	How to initialize a service to enable the authorization engine?

	Enforcement in Object logic
	Examples of a filtered search
	Implications on UDM usage

	Requirements for Attribute Based Access Control authorization in UDM
	What restrictions does UDM require?

	Integration of UDM Authoriztion using the Guardian concept
	Permissions & Capabilities
	Differentiation of search vs read permissions
	Handling of UDM extensions e.g. Extended Attributes
	Conditions provided by UDM
	Default example roles
	Wildcard permissions
	Define the role of the tree structure / Comparision with LDAP ACLs

	Known problems with Guardian
	General/Conceptual problems
	Ambiguity of implementation
	Capabilities are bound to roles
	Capabilites vs Permissions: What is API, what is opaque?
	Restricted charset
	Capability namespace binding restricted to the permission namespace
	No dynamic contexts allowed
	No removal in Guardian possible
	Permission granting: no negative permissions
	Permission lifecycle
	No language to describe rules: just HTTP API endpoints with JSON payloads
	No Caching possible: Capabilities are bound to targets
	Guardian concepts are too abstract

	Security Impacts
	Availability of UDM
	Information disclosure
	OPA/Rego doesn’t know LDAP DNs
	Guardian as Policy Information endpoint doesn’t add security to the whole system architecture automatically
	Guardian has no way to trace decisions
	Guardian debugability
	Guardian API design: new/old state of targets not required for filtering

	Performance Impacts
	Search results must provide full data to Guardian
	Guardian API design: extensive data format
	UDM is synchronous
	Rule evaluation stays on the client.
	check-permissions vs get-permissions endpoints
	UDM actions do a lot of sub-actions

	Management UI Usability problems
	Managment API bugs and issues
	Changing conditions impossible
	Failed decoding of input JSON data
	Unreachable API
	Performance of Management API
	cyclic dependency problem

	Questions
	Conclusion

