
USER'S GUIDE

BIOMAJ v1.2

Authors: David Allouche (allouche@toulouse.inra.fr), Olivier Filangi (olivier.filangi@irisa.fr)

Website: http://biomaj.genouest.org/

This document was issued on: 8 Sep 2011
Acknowledgements:

BioMAJ 1.2 User's Guide page: 1/71

mailto:allouche@toulouse.inra.fr
http://biomaj.genouest.org/
mailto:olivier.filangi@irisa.fr

The authors would like to thank:
-Christophe Caron, Olivier Collin and Hugues Leroy for their contributions.
-The Bretagne Regional Council and the Réseau National des plates-formes de Bio-
Informatique (ReNaBi) for supporting this project.

Table of Contents
1Introduction..5

1.1Why BioMAJ?..5
1.2Background...5
1.3Presentation...5

2Setting up BioMAJ...7
2.1Product contents..7

2.1.1Available banks ..7
2.1.2Available indexes / conversions ...8

2.2Pre-requisites..8
2.2.1System and hardware..8
2.2.2Utility applications..9

2.2.2.1Software usually present on a standard Linux installation..9
2.2.2.2Software requiring special attention..9

2.3Installation..10
2.3.1Initialising environment variables...10
2.3.2Compilation ..10
2.3.3Application global variables...10
2.3.4General configuration: global.properties file..11
2.3.5Database management...11
2.3.6Statefiles migration...12
2.3.7BiomajWatcher installation...12
2.3.8First run of BioMAJ..12
2.3.9Demonstrations ..13

2.3.9.1Alu bank of the NCBI (with formatdb process)..13
2.3.9.2STS bank of the NCBI (with fastacmd process) ..13

2.3.10BioMAJ directories...13
2.3.11Proxy Configuration..14

3Using the application ...16
3.1Application behaviour...16

3.1.1Update cycle..16
3.1.2Data organisation..17

3.2Data maintenance..19
3.2.1Updating a bank..19
3.2.2Deleting one or several bank versions..24
3.2.3Changing the bank name...24
3.2.4Changing production directories...24
3.2.5Rebuilding a version...25
3.2.6Error correction...26
3.2.7Importing data...27
3.2.8Database cleanup...27

3.3Automating updates..27

BioMAJ 1.2 User's Guide page: 2/71

3.4Warehouse monitoring..29
3.4.1E-mail alert: monitoring an update session...30
3.4.2Debugging and error identification during running..32
3.4.3Exploring in the command line: biomaj.sh --status..33

3.4.3.1Exploring the warehouse...33
3.4.3.2Exploring the status of a bank...34

3.4.4Html report..36
3.5Multitenancy...37

4Workflow creation..38
4.1General information..38
4.2Bank update session report...38

4.2.1Configuring the source: description / classification / location..38
4.2.1.1Description and classification...38
4.2.1.2Location of data...39

4.2.2Configuring the data Synchronisation stage ..39
4.2.2.1Remote server and download protocol..40

4.2.2.1.1FTP protocol..40
4.2.2.1.2HTTP protocol...41
4.2.2.1.3Direct HTTP protocol..42
4.2.2.1.4Sftp protocol..43
4.2.2.1.5Amazon S3 protocol..43
4.2.2.1.6Rsync protocol...43
4.2.2.1.7Local protocol..43

4.2.2.2Building download filters (remote.files/local.files)..44
4.2.2.3Getting a version number..46
4.2.2.4Viewing data ...47

4.2.3Configuring the pre, post & remove processing stages..49
4.2.3.1General operation..49

4.2.4Defining elements ..50
4.2.4.1Block ..50
4.2.4.2Meta-process...51
4.2.4.3Process...51

4.2.5Workflow example from scripts available in BioMAJ...54
4.2.6Deployment...56

4.3Information overload: global.properies..57
4.4Computed bank : bank dependencies..58

5Developing and integrating post or pre-processes..60
5.1.1Communication management: messaging..60
5.1.2Managing dependencies of produced files..61
5.1.3Context to script: information on the version number..62
5.1.4Return code...63
5.1.5Debugging...63

5.2Virtual bank concept...63
6Metadata and classification of sources and processes..64

6.1Definition..64
6.2BioMAJ implementation...64
6.3Potential uses..65

7F.A.Q..66
8Appendix..69

8.1Example of configuration files...69

BioMAJ 1.2 User's Guide page: 3/71

8.1.1Global.properties...69
8.2BioMAJ properties..70

BioMAJ 1.2 User's Guide page: 4/71

1 Introduction

1.1 Why BioMAJ?
In bio-computing, analyses are almost systematically reliant on databanks. Any bio-

computing site therefore needs to manage these invaluable databanks that hold a huge amount of
information, usually several terabytes, spread over various international sites and in a consistent
format (there are still several different standards currently).

The type and number of these databanks are constantly changing and the frequency with
which they are updated varies greatly. In most cases, before they can be used, they need to be
reformatted several times, a process that can be very costly in terms of calculation time (several
days for SRS indexes, for example). Monitoring of updates and format conversion results usually
produce trace files (logging) that need to be analysed in the event of any errors (by reading a daily
report e-mail and analysis of the trace files if required). Management of this data is cumbersome
and fiddly. Data managers and users can often lose their way.

1.2 Background
The BioMAJ project came out of the work of three teams in 2005: INRIA Rennes and INRA

Toulouse and Jouy-en-Josas. At the time, no free applications met users’ requirements. The closest
application was citrina, developed by Josh Goodman (from Washington University’s gmod project).
This was a promising prototype – nonetheless quite far from the application required – and it had
not been updated since 2004.

In 2006, these teams (INRIA and INRA) developed a new engine called BioMAJ1. Based on
citrina 0.51, nearly all the code was rewritten and the application’s architecture and functions were
completely rethought and considerably extended.

During 2007, the application was tested on the three sites involved in the project to make it
more robust and suitable for large-scale bio-computing. It was deployed in production on the three
sites involved.

1.3 Presentation
BioMAJ provides:

 A reliable workflow engine that can download remote data automatically and intelligently
(error correction, synchronisation of local and remote data), apply formatting to this data and
put it into production (make the data available for all users and/or applications).

 A group of predefined workflows for the main biological banks.

 An indexing scripts library (formatting for biological data) to be applied to workflows
defined by the administrator or on the predefined workflows.

1Biologie Mise A Jour

BioMAJ 1.2 User's Guide page: 5/71

Application’s main functional features:
- Management of updating cycles for a data source ;

- Logging of workflows;

- Monitoring of the integrity of transferred data;

- Standardisation of data organisation (standard directory structure);

- Management of classification of data sources (depending on type, origin, application index,
etc.) ;

- Management of the local data warehouse, consultation of available versions and
management of source versions (addition, deletion of version and source);

- Administration of each databank with a set of commands ;

- Error correction, i.e. restarting an unfinished cycle;

- Rebuilding of a given release ;

- Description of a relatively complex post-processing workflow;

- Supervision of the application via e-mail alerts, positioned at key points in the workflow of
each source. During use of crontab, this helps alert the administrator as to the correct or
incorrect functioning of sessions ;

- Monitoring of the data warehouse, generation of statistics on make-up of the data
warehouse. Monitoring of source development over time. Creation of web summary reports
containing an overview of warehouse data and a development history source by source.

BioMAJ is an application designed to help maintain a data warehouse and is intended to assist
the data administrator. BioMAJ can manage a great mass of similar data and locally consolidate all
distributed sources available on the network via protocols such as ftp, http and rsync, and then
automate more or less complex processing chains on this data. The application automates the
updating cycle and facilitates supervision of the catalogue of managed databanks while providing a
history of maintenance operations. The application helps maintain the main biological databanks
provided by the international scientific community on a local platform. BioMAJ’s field of
application is nonetheless wider than this and could be extended to any area which manages
massive distributed data.

BioMAJ provides flexibility in managing banks of sequences on a site while allowing
for rapid implementation of new workflows by simply creating a bank description file.

This document presents the set up and installation procedures for BioMAJ on a Unix system.
The various aspects of daily management are then covered. Advanced functions, including creation
of workflows and post-processing, are also analysed.

BioMAJ 1.2 User's Guide page: 6/71

2 Setting up BioMAJ
2.1 Product contents

 bin/biomaj.sh : BioMAJ executable

 bin/env.sh : environment variables to be defined for
 processing

 conf/process : processing scripts

 conf/db_properties : directory of properties files used by BioMAJ

 conf/db_properties/samples : sample properties files without post-
 processing.

 conf/db_properties/samples-extended: sample properties files with post-
 processing (indexing).

 doc : BioMAJ documentation

 src : sources

 sbin : additional utilities

 workflows : scripts for creating updates

2.1.1 Available banks
To work, the application needs a configuration file containing a description of the workflow

associated with each data source. This file is the properties file of the bank.

Construction of a properties file is not difficult, however, it is a laborious task that requires
good knowledge of the data source and the BioMAJ application. As validation of the properties file
is not immediate, we are providing sample configuration files for several common banks. These can
be found in the following directories:

$BIOMAJ_ROOT/conf/db_properties/workflow_withprocess

and
BIOMAJ_ROOT/ conf/db_properties/workflow_withoutprocess.

We suggest that you mutualise the properties files. If you develop them for specific banks and
you want to share them, you can post them to the list: BioMAJ-users@lists.gforge.inria.fr.

After validation, these files will be included in future versions of the software.

In terms of validation, to be validated, a post-process or properties file must be successfully
tested on at least two sites using BioMAJ. Minimal documentation should also be provided. This
must include a script synopsis and a description of the installation procedure: pre-requisites,
environment variables, configuration of applications using data from the script.

A few examples are given in the next section.

BioMAJ 1.2 User's Guide page: 7/71

mailto:BioMAJ-users@lists.gforge.inria.fr

2.1.2 Available indexes / conversions

Some post-processes are available with the engine as standard:

 Fastacmd: conversion of blast bank into fasta file
 $BIOMAJ_ROOT/doc/process/fastacmdTLSE.html

 Formatdb: indexing a fasta bank for a blast ncbi
 $BIOMAJ_ROOT/doc/process/formatdbTLSE.html

 SRS : SRS indexing
$BIOMAJ_ROOT/doc/process/indexSrsTLSE.html

Other process:

 SendMail: Script for sending an e-mail alert.
 $BIOMAJ_ROOT/doc/process/sendMailTLSE.html

Each of these scripts has individual configuration help in the doc/process directory. In
most cases, you need to adapt the workflow to your own configuration.

2.2 Pre-requisites

2.2.1 System and hardware
BioMAJ was widely developed and tested on architectures with AMD or Intel X86 or X86-64

processors on Linux. However, given the software technology used (java and ant), it should be
usable on a wide range of computers and systèmes d'exploitation, including Mac OS, and the most
popular versions of Unix (BSD, Solaris, AIX, ...).

The main OS compatibility limits aren’t due to the engine but to the post-process used.
Indexing applications are not necessarily compatible with or available on all platforms.

BioMAJ 1.2 User's Guide page: 8/71

http://fr.wikipedia.org/wiki/Unix
http://fr.wikipedia.org/wiki/Mac_OS
http://fr.wikipedia.org/wiki/Syst%C3%A8me_d'exploitation

Using BioMAJ on Windows is more difficult. It still needs further checking but with a few
changes to the configuration, the application should be able to work in these environments using the
cygwin emulator.

BioMAJ is a general-use application that can synchronise different types and size of data.
When used in a biological context, the application has to carry out massive downloads and
extremely resource-heavy post-processing. The hardware architecture hosting the application must
therefore be of a suitable size. The application works on a simple laptop but for full operation (data
mining and indexing), of workflows in distribution, a multi-processor (bi or quadri) and 1-2 TB
of disk space are strongly recommended.

Note that ideally, a central storage space accessible via a cluster of machines can help
BioMAJ provide much faster indexing. In this event, calculation delay using rsh, ssh, or any
ordering such as Torque, Pbs, Sge, Lsf or Condor is required. All calculation machines must have
the capacity to write to a shared storage space. To do this, several options are available: using NFS,
a clustered file system, an NAS, a split file system, etc. These solutions are relatively complex to
implement but they are the price to be paid for optimum management of data on a large scale.

2.2.2 Utility applications
This section contains the software required prior to installation of the application engine:

The list of pre-required software is subdivided into two sections:

2.2.2.1 Software usually present on a standard Linux installation
•GNU Tar 1.13 or higher (http://www.gnu.org/software/tar/tar.html)
•Gzip 1.3.3 or higher (http://www.gzip.org/)
•Bzip2 0.9.0 or higher (http://sources.redhat.com/bzip2/)

2.2.2.2 Software requiring special attention

•Java 1.6.x (http://java.sun.com/j2se/)
•Ant 1.7.0 or higher(http://ant.apache.org/)

BioMAJ 1.2 User's Guide page: 9/71

http://ant.apache.org/
http://java.sun.com/j2se/
http://sources.redhat.com/bzip2/
http://www.gzip.org/
http://www.gnu.org/software/tar/tar.html

This list does not include the pre-requisites for each post-process.
Each post-process called by the engine generally uses one or more utilities belonging to it.

e.g.: For the purposes of the demo, installation of the toolkit blast ncbi is required as well as
the software in the above lists. Indexing uses blast and fasta formatting post-processes. Another
example is that the SRS indexing post-process requires pre-installed SRS and an ad hoc
configuration of the application (cf. doc/process/srsdb.i). More generally, each post-process
includes dedicated documentation in the directory /doc/process/

2.3 Installation
Described below are the steps for a manual installation of Biomaj. If you installed BioMAJ

via a distribution package (.deb or rpm), go directly to section 2.3.6.

2.3.1 Initialising environment variables
BioMAJ requires three environment variables to be set to run properly. These are defined in

the file bin/env.sh.
export BIOMAJ_ROOT=
export JAVA_HOME=
export ANT_HOME=

• BIOMAJ_ROOT: The BioMAJ installation path

• ANT_HOME: ANT home directory

• JAVA_HOME: JAVA home directory

2.3.2 Compilation
To compile the application, you just need to enter the following commands in

BIOMAJ_ROOT directory:
ant

In the event of successive compilations, we recommend you clean up intermediate files
created by previous compilations by using the command (to be run in the BioMAJ root
directory):

ant clean

2.3.3 Application global variables

To run post-processes, applications often require specific environment variables.

The BioMAJ engine uses the script $BIOMAJ_ROOT/bin/env.sh to position the required
environment variables for running post-processes (indexing, e-mail, etc.).

This script is especially useful when the application administrator does not have sufficient
rights to initialise variables at the overall level of the system or when they want to separate their
usual working environment from the application environment.

BioMAJ 1.2 User's Guide page: 10/71

Example of an initialisation script for an srs or blast environment:

#!/bin/sh

export BLASTDB=/bank/blastdb #initialisation of the variable

 #BLASTDB

. /data/srs/srs/etc/prep_srs.sh #initialisation of environment

 #required for SRS

2.3.4 General configuration: global.properties file
The file $BIOMAJ_ROOT/conf/db_properties/global.properties contains a

number of internal variables for the BioMAJ application that are pre-initialised in this file (cf.
writing new workflows section)

 Before running BioMAJ (script $BIOMAJ_ROOT/bin/biomaj.sh), you should
initialise the root of your local data repository.
In the file $BIOMAJ_ROOT/conf/db_properties/global.properties,
initialisation of the variable data.dir is essential for running BioMAJ

2.3.5 Database management
Since version 1.1.0, logging system is no longer XML based but relies on a relational

database.

Biomaj is shipped with an embedded database, HSQLDB, which requires very few
configuration, but also supports MySQL.

The configuration is done via the global.properies file :

#----------------
#Database configuration
#----------------

#database.type=mysql
#database.driver=com.mysql.jdbc.Driver
#database.url=jdbc:mysql://{server adress}/{database name}
#database.login=
#database.password=

database.type=hsqldb
database.driver=org.hsqldb.jdbcDriver
database.url=jdbc:hsqldb:hsql://localhost/bmajdb
database.login=sa
database.password=

MySQL installation and configuration is left to the user. The schema of the database is
available in $BIOMAJ_ROOT/sql/mysql.sql. As for HSQLDB, a few scripts have been written to
manage the basic operations :

– Starting the server : $BIOMAJ_ROOT/bin/start_dbserver.sh

BioMAJ 1.2 User's Guide page: 11/71

– Stopping the server : $BIOMAJ_ROOT/bin/stop_dbserver.sh

– (Re)Creating the database : $BIOMAJ_ROOT/bin/create_dababase.sh
Note that if you manage a significant amount of banks, MySQL is likely to offer better

performances.

2.3.6 Statefiles migration
To migrate the data from an older version of Biomaj which relies on xml “statefiles” (<1.1.0),

you can use this script :
$BIOMAJ_ROOT/bin/import_statefiles.sh

It can take either a list of files or a directory to search the statefiles in (see the command help for
further information). Please note that depending on the amount of data you want to import and the
RDBMS (HSQL or MySQL), the process can last from a few seconds to several hours.

2.3.7 BiomajWatcher installation
BiomajWatcher (BW) is a web interface (available since BioMAJ 1.1.0) designed to provide a

quick overview of available banks and basic administration commands. Refer to BiomajWatcher
specific documentation.

2.3.8 First run of BioMAJ
Two sample banks are provided for demonstration purposes. These are the alu and sts banks of the
ncbi.

For each one, two workflow scenarios can be used:
without post-process
with post-process (blast indexing for alu and fasta conversion for sts)

If you want to use the demonstration workflows, take care to place these properties files in the
directory $BIOMAJ_ROOT/conf/db_properties/

 Use of a demonstration scenario with post-processing means you need to have
available

the executables contained in the blast package of the ncbi. This is available at:
ftp://ftp.ncbi.nih.gov/blast/executables/LATEST.

Before use, you must also update the paths for the executables called in the file:
$BIOMAJ_ROOT/conf/process/unix_command_system.cfg

FASTACMD=/MY/CHEMIN/fastacmd
FORMATDB=/MY/CHEMIN/formatdb

For more information on configuration and running of available post-processes, see the directory:
$BIOMAJ_ROOT/doc/process

NB: The list of parameters that can be used in the properties files of your banks is available in the

BioMAJ 1.2 User's Guide page: 12/71

ftp://ftp.ncbi.nih.gov/blast/executables/LATEST

appendix to this document.

2.3.9 Demonstrations

2.3.9.1 Alu bank of the NCBI (with formatdb process)
Configuration file: $BIOMAJ_ROOT/conf/db_properties/alu.properties

To not run blast indexing (formatdb), the following comment line should appear in the
configuration file (use a # at the beginning of the line):

db.post.process=POST1

Run command: $BIOMAJ_ROOT/bin/biomaj.sh --update alu --console

2.3.9.2 STS bank of the NCBI (with fastacmd process)
Configuration file: $BIOMAJ_ROOT/conf/db_properties/sts.properties

To not run blast indexing (formatdb), the following comment line should appear in the
configuration file (use a # at the beginning of the line):

db.post.process=POST1

Run command: $BIOMAJ_ROOT/bin/biomaj.sh --update sts –console

2.3.10 BioMAJ directories
The directories used by BioMAJ :

 log generated by the application
 workflows definition
 production state files (for old biomaj versions and migration purposes)
 post-processing directory
 html report directory
 directory that contains database and related stuff

A configuration file is located on the root directory : $BIOMAJ_ROOT/general.conf. This
file is generated on the first execution of the application.

Created by BioMAJ 0.9.3.2
Date : 03/01/2008 14:36:30
File : General configuration
[DIRECTORIES]
log.dir =/home/biomaj/log
log-biomaj.dir =/home/biomaj/log/biomaj-runtime
statefiles.dir =/home/biomaj/statefile
workflows.dir =/home/biomaj/conf/db_properties

BioMAJ 1.2 User's Guide page: 13/71

process.dir =/home/biomaj/conf/process
webrepport.dir =/home/biomaj/rapport

[APPLICATIONS]
uncompress.bin=tar,tar2,tar3,gunzip,bunzip,unzip

tar.bin=/bin/tar
tar.case=.tar.gz,.tgz,.tar.Z
tar.option.uncomp=-zxf
tar.option.output=-C
tar.option.test=-tf

gunzip.bin=/usr/bin/gunzip
gunzip.case=.gz,.Z
gunzip.option.uncomp=-f
gunzip.option.test=-t

tar2.bin=/bin/tar
tar2.case=.tar.bz2
tar2.option.uncomp=-jxf
tar2.option.output=-C
tar2.option.test=-tf

bunzip.bin=/usr/bin/bunzip2
bunzip.case=.bz2
bunzip.option.uncomp=-f
bunzip.option.output=-c
bunzip.option.test=-t

tar3.bin=/bin/tar
tar3.case=.tar
tar3.option.uncomp=-xf
tar3.option.output=-C
tar3.option.test=-tf

unzip.bin=/usr/bin/unzip
unzip.case=.zip
unzip.option.uncomp=-f
unzip.option.output=-d
unzip.option.test=-t

rsync.bin=/usr/bin/rsync

2.3.11 Proxy Configuration

Biomaj support proxying under some conditions.

For the HTTP protocol, a classic HTTP proxy is ok.

For the FTP protocol, your proxy must handle both SOCKS (4 or 5) and FTP protocol.

For both cases, you have to initialize the following properties in the file

BioMAJ 1.2 User's Guide page: 14/71

$BIOMAJ_ROOT/conf/db_properties/global.properties :

 proxyHost

proxyPort

proxyUser (optional)

proxyPassword (optional)

In addition, you have to specify some environment variables that will be used for the
download in the file $BIOMAJ_ROOT/bin/env.sh.

export http_proxy=http://login:mdp@[host]:[port]

export ftp_proxy=http://login:mdp@[host]:[port]

BioMAJ 1.2 User's Guide page: 15/71

3 Using the application
3.1 Application behaviour

3.1.1 Update cycle
In this section, the cycle and stages that form it are summarised.

BioMAJ is designed to carry out update cycles for a data source. Each cycle has five stages.

1. Initialisation:

The engine loads the properties file containing the workflow description and looks at the
current status of the bank by running through the associated status file. After determining
the bank’s status, the application opens the full cycle or, if necessary, tries to finish the
previously incomplete cycle (in the event of an error correction).

 A data source has an associated file that must be named {bankname}.properties
(e.g. for the nr bank: nr.properties). Running the properties file describing the workflow
(nr.properties) will generate or add to a status file showing the workflow’s progress (run
date of sub-tasks, log of amended files, etc.).

BioMAJ 1.2 User's Guide page: 16/71

The properties file has to be placed in the directory ${workflows.dir} defined in $
{BIOMAJ_ROOT}/general.conf.
The status file is generated in xml format in the directory ${statefiles.dir} defined in $
{BIOMAJ_ROOT}/general.conf.

2. Pre-processing

This is a sub-workflow run before the data update. It has the same properties as the post-
processing part explained below. Its purpose is simple: to start tasks, controls and alerts
prior to the rest of the updating process.

3. Synchronisation
During this stage, the engine connects to the source and checks for new data compared to
data already present locally. It determines the list of files to be downloaded and assigns a
version name. It then carries out the download followed by extraction. Finally, it
consolidates the data by producing a full version of the bank, adhering to the restrictions
defined by the properties file.

4. Post-processing
During this stage, the engine runs the post-processing sub-workflow. The form can
describe relatively complex workflows. It is a succession of task blocks that contain one
or several sub-collections of meta-tasks that can themselves be made up of several
processes. Each block is run in sequence. In a given block, the meta-tasks that make it up
are run in parallel. In a meta-task, processes are run in sequence. If there is an error in a
process, only the branch that it belongs to is stopped. This creates a Directed Acyclical
Graph (DAG).

5. Deployment
If the previous stages have completed without error, the application puts the new version
of the source online. Then it deletes the obsolete versions and the temporary files
produced when running the post-processes.

All stages in a session are written up into the status file. If there is an error, during the
following session, the application will try to continue the session from the first erroneous
stage of the previous session to complete the cycle. One cycle is associated with a data
source. One or more sessions may be necessary to complete a cycle.

3.1.2 Data organisation

When BioMAJ manages data sources, the application produces a folder structure by default for
each one. If there is one missing, directories are created during the first update session. An example
of a typical folder structure is shown in the below diagram.

BioMAJ 1.2 User's Guide page: 17/71

Illustration 1: Organisation of the production folder
 The BioMAJ folder structure is based on a four-tier architecture:

/db: This is the path where all sources maintained by the application will be kept (name of
the root bank production directory defined by the property data.dir) .

/db/Bank[n]: all biological banks in production on the site. This second level is defined by
the property dir.version (redefined for each workflow), if it is not defined, this property takes
the value db.name (the source name) by default.

/db/Bank[n]/Bank[n]_release[p]: each downloaded version is placed in a version
directory. The name of this directory is by default called: db.name_release. The release number
used depends on the property keep.old.version.

/db/Bank[n]/ Bank[n]_release_[p]/flat: each version has the same
organisation. Downloaded files have been moved into a flat directory after extraction. At the
same level, we can find several directories, each containing the results of indexing post-
processing applied to the version in question.

/db/Bank[n]/current: For each bank, a current link is automatically positioned by
BioMAJ during deployment of a new version of the bank.

/db/Bank[n]/future_release: Similarly a future_release link is placed on the
directory of a version under construction.

The two links « current » and « future_release » have an invariable name.
They are therefore stable in time. We recommend that you use them when configuring
applications that carry out indexing (future_release link) or use the data (current link).

BioMAJ 1.2 User's Guide page: 18/71

/db/
Bank1

Bank1_release1
FLAT
blast

current Bank1_release1

srs
My_application …

FLAT
blast
srs
My_application …

Future_release Bank1_release2

Bank2/

Bank2_release1
…

 However, users who carry out very lengthy processing should use absolute paths of
the bank versions. If data is then updated, they will not be affected by changes in position
of the « current » link during calculation.

3.2 Data maintenance

3.2.1 Updating a bank

For the first update of a bank, you have two options: use a configuration file (workflow description)
already defined by the directory:

$BIOMAJ_ROOT/conf/db_properties/workflow_withprocess
or

$BIOMAJ_ROOT/conf/db_properties/workflow_withoutprocess

or create a new workflow (see 4).

To show that the BioMAJ engine can handle a new workflow, a properties file must always
feature in the directory:

$BIOMAJ_ROOT/conf/db_properties/

To run the workflow in console mode:

$BIOMAJ_ROOT/bin/biomaj.sh --update [bank name] –console

Console mode is practical for viewing a workflow running. We recommend you use it
occasionally to check the behaviour of a properties file.

Example with alu bank:

$BIOMAJ_ROOT/bin/biomaj.sh --update alu --console

BioMAJ 1.2 User's Guide page: 19/71

BioMAJ creates temporary and production directories if they do not already exist. In this example,
note that there is no pre-processing.

BioMAJ 1.2 User's Guide page: 20/71

Illustration 2: Console d'une première mise en ligne de la banque alu

BioMAJ 1.2 User's Guide page: 21/71

Illustration 3: Console - phase de synchronisation pour la banque alu

Illustration 4: Console – fin de phase de synchronisation et de déploiement pour
la banque alu

As can be seen in the illustrations above (cf illustration 2 and 3), the synchronisation phase is
subdivided into seven sub-tasks: release ; remotelisting ; filecheck ; download; extract ;
versionsmanagement ; move

-To begin with, the task release gets the version number (or by default the application gives it
the date of the most recent file for the version) ;
-Then the task remotelisting in BioMAJ sets the elements (files and directories) that make up
the remote version ;
-They are then compared to the local files during the filecheck task. In this example, no file
exists locally ;
-They are picked up during the download stage ;
-The downloaded files are extracted during the extract task;
-Then the directory of the new version is created (versionsmanagement task) .
-Finally, the files are moved to the future production directory during the move task (in the
example: /local/db2/alu/alu_2003-11-26/flat) .

Following this stage, a post-processing stage is run in a new tab (cf illustration 4).
By clicking on this tab, you can see the post-processing log (here a simple echo). Each bmaj-
execute task represents an executed process.

When the post-processing stage is finished, you can follow the final progress of the
workflow (deployment task) by clicking on the first alu tab. The deployment task creates a
symbolic current link on the production direction that has just been created, modifies the access
rights to make this directory accessible to users and deletes the contents of the temporary alu
directory (files created but not used in production).

BioMAJ 1.2 User's Guide page: 22/71

Illustration 5: Phase de post-processus

3.2.2 Deleting one or several bank versions
BioMAJ keeps a number of versions defined by the use of the parameter keep.old.version.

By default, this parameter is set to zero (cf. global.properties). At most, the engine will keep one
version in production and one under construction. The parameter keep.old.version can be loaded in
the properties file of any bank. It will only be taken into account for the source in question.

It is quite usual for the data warehouse to be at saturation limit during operation. It is therefore
necessary to clean up quite quickly.

To remove a bank that depends on management by BioMAJ, the -- remove command is:
$BIOMAJ_ROOT/bin/biomaj.sh --remove [bankname] --keep-dir-prod [true|false]

This option:

Asks which version you want to delete

Then deletes the log directory $BIOMAJ_ROOT/log/[bankname]

It keeps the production directory data if the option --keep-dir-prod is used

It launches remove process for each version deleted (see 4.2.4).

3.2.3 Changing the bank name
If we want to keep the history of the sessions, production directories and change the name of a

bank, use the option --change-dbname
$BIOMAJ_ROOT/bin/biomaj.sh --change-dbname [name] [newName]

Propertie db.name don't need to be redefined.

3.2.4 Changing production directories
There are two ways to change the directory production of a bank.

Changing the property data.dir in file global.properties (All banks will have their production in
repertory production amended)
Changing the property version.dir file ownership of the bank ([name]. Properties)
Executing the command:

$BIOMAJ_ROOT/bin/biomaj.sh –move-production-directories
[bankname]

 If the properties version.dir or data.dir are modified, you can no longer perform
updates. You must run the command-move-production-directories.

BioMAJ 1.2 User's Guide page: 23/71

3.2.5 Rebuilding a version
You can go back a step and rebuild the last version of a databank.

e.g.: biomaj.sh –rebuild Mybank

This command is interpreted in two different ways:

-If no version of the source is available locally:
i) The application changes the current bank (version N) status from online to updating. To
do this, the symbolic « current » link is erased and a « future_release » link is repositioned in
the version directory.

ii) Data other than raw data is deleted

iii) An update cycle is re-run. If the data has not changed on the remote server, this can then
re-run post-processing on the raw data and re-deploy.

-If at least two versions of the source are available locally:
During stage i) above, BioMAJ will also re-present version N-1 online during processing of
version N. The current link is effectively repositioned on version N-1 and the future_release link
on version N.

BioMAJ 1.2 User's Guide page: 24/71

3.2.6 Error correction
BioMAJ includes different types of error correction, a generally transparent procedure. The

command used is the same as that for an update, i.e.:

•biomaj.sh -d MyBank

This will start a new session that will attempt to complete the last non-closed cycle for the
bank or banks in question. The way the application behaves depends on the error context.

- If an error is produced during the synchronisation stage (network outage, remote server
crash, etc.), during the new session, after rebuilding the list of files included in the version, the
application will scan the data held locally and try to continue the cycle.

- If an occasionally error happens during a file download, several attempts are made before
the download is terminated with errors. The session will be fully stopped after all files in the list are
processed.

 After each download, an integrity check is carried out that includes checking the
file’s local attributes (name, size and date) against those on the original remote server.

- If an error occurs during the post-processing stage, when it is re-tried, BioMAJ starts again
at the first process with error status.

In the event of post-processing, errors noted are often due to system errors. It is important to
note that if the auly process does not return an error (different from zero for shell scripts) during
erratic interruption, BioMAJ will not detect it and will continue the session until it is put online.
However, to help detect this type of problem, if the new version is smaller than the previous one,
the application will transmit a warning.

Data is associated with a version and this version is dependent on the remote server. If a
version is incomplete locally when the remote server is updating data, the local version will not be
completed. In this event, it is necessary to open a new update cycle as the current cycle cannot be
terminated.

To resolve this matter, the option –N or –new has been developed:

•biomaj.sh --update <dbname> --new

This command creates a new cycle.

This command must only be used as a last resort after analysis of the situation (reading
log files, checking the remote server, etc.) if you are sure that the current cycle will not be
completed.

BioMAJ 1.2 User's Guide page: 25/71

3.2.7 Importing data
The management history of a source is stored in the database. If for any reason the database

was to be erased or unusable, all of the history would be lost. To reintegrate this data and regain
control of the bank, a command that re-imports the data has been developed.

An example of using this command is below:
 biomaj.sh --import nr

Use of this file implies that the data is coherent with the bank properties file and that the
production directory data « conforms » with BioMAJ directory structure organisation:

The property dir.version must be placed in the production directory of the bank to be
imported. This directory must contain a version directory (dbname_version) and a current link
pointing to this directory. The version directory must contain a flat directory containing all source
data from the server.

conf/db_properties/nr.properties (cf. Organising Data)

It is also important to note that:

•Only the data contained in the flat directory (raw data) of the current version will be imported.

•If there are several versions, older versions than the latest one will not be imported.

3.2.8 Database cleanup
Every update cycle is stored in the database, even those who do not result in the update of the

databank. As the database grows larger, the removal of these cycles might be useful to save some
space. The option –clean-database was developed for that purpose.

The command:
biomaj.sh --clean-database <dbname>

will delete all the sessions and update cycles that ended without error and did not produce
new production directories.

3.3 Automating updates

Since version 1.1.0, scheduled updates are directly managed via BmajWatcher.

Still, if you don't want to use the web administration interface, the crontab option is available.

Automatic updates can be carried out using a crontab. You first need to know the frequency
of source updates you want to automate maintenance for.

Cron is a Unix utility that allows the user to run commands at given intervals.

An example of crontab is available in the directory: $BIOMAJ_ROOT/misc/

You need to use crontab under the BIOMAJ user identity, i.e. the login the application is
meant to work under.

BioMAJ 1.2 User's Guide page: 26/71

User profile files (e.g. .cshrc) are not read before cron runs commands. This can cause strange
behaviour in scripts that is sometimes difficult for the layman to understand.

To avoid this problem, before use, you must initialise environment variables required for
BioMAJ operation.

A summary of required environment variables follows:

#define the shell used when opening a cron session

SHELL=/bin/sh

position of the log storage directory for cron commands:

HOME=$BIOMAJ_ROOT/log/cron

position of the BIOMAJ_ROOT variable:

BIOMAJ_ROOT=/MY/RACINE/BIOMAJ

definition of the java environment:

JAVA_HOME=/usr/local/java/jdk1.6.0

CLASSPATH=/usr/local/java/jdk1.6.0/dt.jar:.

definition of the ant environment:

ANT_HOME=/usr/ant/apache-ant-1.6.5

-To use the crontab, enter the following command:
crontab ./BioMAJ_crontab

-To edit the contents of a crontab, use the command:
crontab -e

This command opens the crontab file BioMAJ_crontab in a text editor

For each bank, it is very important to position the local update date depending on how
the remote site works. Otherwise, you risk not finishing an update cycle. The reason is simple:
the files you want to use will be deleted while you’re downloading.

If you place the BioMAJ session at the same time as a remote data update by mistake,
BioMAJ does have a monitoring function that will protect you from building a chimeric version. A
chimera is a corrupt version made up partly of files from the old version and partly of those from
the new source version.

-To add an update:

Just add it to the crontab file. Each line represents a command to be run. The lines have the
following format:
time command

The commands are simply those that the user would enter if they were running them themselves.

A time is split into five fields:

field Available values

BioMAJ 1.2 User's Guide page: 27/71

Minute 0-59
Hour 0-23
Day of the
month 1-31

Month 1-12

Day of the
week

0-7 (0 and 7 for Sunday) for Linux. For other
Unix versions, see the manual for the meaning
of these figures.

Each field is separated by a space and several elements of the same type are separated by commas
(no space). An asterisk (*) means: "all". E.g. in Linux:

0,10,20,30,40,50 * 1 * * /usr/local/BioMAJ/bin/biomaj.sh –d
genbanknews

This line means:
« Run /usr/local/BioMAJ/bin/biomaj.sh –d genbanknews every 0, 10, 20, etc. minutes of every hour
on the first day of each month ».

Usually, you only give the elements that are pertinent and use an asterisk (*) for the others.
You complete a crontab syntax using the command:
man -s 5 crontab

NB: an elegant alternative to using variables is to run a specific script before running the
biomaj.sh. executable, e.g.

0,10,20,30,40,50 * 1 * 7 $HOME/.bashrc ;
/usr/local/BioMAJ/bin/biomaj.sh –d genbanknews

3.4 Warehouse monitoring
BioMAJ has permanent features for monitoring operation. What do we mean by monitoring?

This can cover several aspects at different levels:

-Knowing the warehouse’s contents;

-Following the progress of a bank;

-Monitoring the progress of an update cycle.

As we will see in this section, three information access methods are available. Depending on the
type of information, it can be obtained by e-mail, in console mode or using your browser via an
html link.

BioMAJ 1.2 User's Guide page: 28/71

3.4.1 E-mail alert: monitoring an update session

At the end of each BioMAJ session, a report is sent by e-mail to the data administrator. The
person receiving the report’s contact details are given by default in the file
global.properties.

The relevant properties are: mail.smtp.host, mail.admin and mail.from
As their name suggests, these are respectively the address of the mail server, the address of

the administrator and the address of the sender.

The e-mail summarises all the information relating to the updated version and the various
stages of cycle stages, warnings and errors.

Its subject field has been structured so it can be easily filtered by your e-mail client.

This subject is a variable character string made up of the following fields:
BioMAJ message:BANK[$dbname]-STATUS[$status]-UDPATE[TRUE|FALSE]-$Release

The subject is therefore linked to the bank and the session results. A session without errors
will have a STATUS[TRUE] field whereas a session with errors will have a STATUS[FALSE] field
in its title. If the session production is a version, the string: UPDATE[TRUE] followed by the
version name will be added to the e-mail subject line.

Here are two examples of e-mail reports:

Date:
Thu, 27 Sep 2007 18:35:34 +0200 (CEST)

From: biomjtest@toulouse.inra.fr
To dataman@toulouse.inra.fr

Subject: Biomaj message: BANK [human_genomic] - STATUS [TRUE]- UPDATE [TRUE]
RELEASE:2007-10-01

Start:05-10-2007 13:04:10
End :05-10-2007 14:02:04

BioMAJ 1.2 User's Guide page: 29/71

mailto:dataman@toulouse.inra.fr
javascript:open_compose_win('popup=1&to=biomjtest@toulouse.inra.fr&cc=&bcc=&msg=&subject=&thismailbox=INBOX');

****************** INFO RELEASE ***************
Number of session :1

Production directory :/db/ncbi/blast/human_genomic/human_genomic_2007-10-01
Release :2007-10-01
Download :1,995G
Bandwidth (Mo/s) :3.1467621
Num files downloaded :3
Release :4,474G

Processes:
Metaproc:[POST1] log:
[/db/biomaj/Bin/log/human_genomic/20071005130410/postprocess.POST1.log]
 --> fastacmd(Create Fasta File) --> sendMail(mail)

SESSION:

LOG:/db/biomaj/Bin/log/human_genomic/20071005130410/mirror.log
----------- GLOBAL ERROR -----------------------
--

----------- GLOBAL WARNING --------------------

----------- ERROR ON SUB-TASK -----------------------
 *** preprocess ***
 *** release ***
 *** check ***
 *** download ***
 *** extract ***
 *** addLocalFiles ***
 *** makeRelease ***
 *** postprocess ***
WARNING: POST1::fastacmd_hg : the environment variable BLASTDB is not
set. Default value is /db/blastdb.
 *** deployment ***
--

Illustration 6: Example of an e-mail alert produced during a correct BioMAJ session with a
version update.

BioMAJ 1.2 User's Guide page: 30/71

Date: Thu, 27 Sep 2007 18:35:34 +0200 (CEST)

From: biomjtest@toulouse.inra.fr
To: dataman@toulouse.inra.fr

Subject: BioMAJ message: BANK [alu] - STATUS [FALSE]

Illustration 7: Example of an e-mail alert produced during a problematic BioMAJ session.

3.4.2 Debugging and error identification during running
Session logs can be found by:

Seeing the html report (see 3.4.4)

Viewing files:

$BIOMAJ_ROOT/log/[bankname]/[datesession]/mirror.log: initialisation,
synchronisation, deployment
 $BIOMAJ_ROOT/log/[bankname]/[datesession]/[preprocess|postprocess]-

[groupe-process].log: log of an defined process log for post-processing (see 4.2.3)

 You can get continuous information on workflow status by running this command in a
shell:

BioMAJ 1.2 User's Guide page: 31/71

Start :27-09-2007 18:16:56
End :27-09-2007 18:17:31
SESSION:

LOG:/home/allouche/BioMAJweb/BioMAJ_dev/log/alu/20070927181656/mirror.log
----------- GLOBAL ERROR -----------------------
ERROR : BioMAJ stopped.
See the logs to obtain more information.
--
----------- GLOBAL WARNING --------------------
----------- ERROR ON SUB-TASK -----------------------
 *** preprocess ***
 *** release ***
 *** check ***
 *** download ***
 *** extract ***
WARNING: extract: no match to be decompressed !
 *** addLocalFiles ***
 *** makeRelease ***
 *** postprocess ***

ERROR: POST1::cptest : /bin/cp: cannot stat
`/bank/ncbi/blast/alu/future_release/flat': No such file or directory
ERROR: POST1::cptest : /bin/cp: cannot create regular file
`/home/allouche/bank/ncbi/blast/alu/futur_release/testfasta/test.fa': No such
file or directory
ERROR: POST1::cptest : "Process cptest (with executable cptest.exe) generate
an error."
read log files to obtain more information.
--

mailto:dataman@toulouse.inra.fr
javascript:open_compose_win('popup=1&to=biomjtest@toulouse.inra.fr&cc=&bcc=&msg=&subject=&thismailbox=INBOX');

> tail -f log/[bank]/[date]/mirror.log

3.4.3 Exploring in the command line: biomaj.sh --status

3.4.3.1 Exploring the warehouse
•The command: biomaj.sh --status lists the sources managed by the application.

If the list is relatively long, this command has an option for filtering to extract a sub-group from
the entire catalogue.

Several filters are available:

The –status command can be used as follows:

biomaj.sh -S --dbtype genome

BioMAJ 1.2 User's Guide page: 32/71

--dbtype <dbtype> Sources with the given dbtype.

--online Sources not currently updating.

--updating Sources having a running update cycle.

DbType DbName Last release Date Session Status
--
genome Anopheles_gambiae 2007-06-01 15-06-2007 online
 Apis_mellifera 23-01-2007 21-03-2007 online
 Arabidopsis_thaliana 2007-04-24 28-04-2007 online
 Bacteria 2007-08-10 22-08-2007 online
 Bos_taurus 2007-04-25 11-05-2007 online
 Caenorhabditis_elegans 16-02-2006 21-03-2007 online
 Canis_familiaris 23-01-2007 21-03-2007 online
 D_rerio 01-03-2007 21-03-2007 online
 Drosophila_melanogaster 23-01-2007 21-03-2007 online
 Fungi 2007-07-12 20-08-2007 online
 Gallus_gallus 23-01-2007 21-03-2007 online
 H_sapiens 2007-04-17 20-04-2007 online
 M_musculus 2007-07-05 21-08-2007 online
 Macaca_mulatta 23-01-2007 23-03-2007 online
 Monodelphis_domestica 06-03-2007 23-03-2007 online
 Pan_troglodytes 02-03-2007 23-03-2007 online
 Plasmodium_falciparum 2007-07-24 16-08-2007 online
 R_norvegicus 23-01-2007 21-03-2007 online
 Saccharomyces_cerevisiae 2007-08-13 20-08-2007 online
 Schizosaccharomyces_pombe 05-03-2002 23-03-2007 online
 Strongylocentrotus_purpuratus 23-01-2007 02-04-2007 online
 Tribolium_castaneum 25-01-2007 23-03-2007 online

Illustration 8: Result of status command

In the above example, dbtype filtering displays all sources maintained in the local catalogue
classified as « genomes ».

The results table has five fields:

Dbtype: source classification field

Dbname: generic name given to the source

Last release: name of the latest source version

•Session Date: update date

•Status: version status (online or updating: if the last cycle is open or closed)

 Note that it is possible to combine filters:
biomaj.sh -S --updating –dbtype=genome

will give a list of genomes being updated.

3.4.3.2 Exploring the status of a bank

We have just seen that warehouse contents can be displayed with the command:
$BIOMAJ_ROOT/bin/biomaj.sh --status

Detailed information on each bank maintained by BioMAJ can be obtained with the
command:

$BIOMAJ_ROOT/bin/biomaj.sh -–status [bankname]

When a bank name is given, the option --status displays four blocks of data: the first contains
the configuration attributes (user-defined properties file), the second includes all data associated
with the current version, the third relates to the version being updated. The fourth block lists the

BioMAJ 1.2 User's Guide page: 33/71

bank versions in production.

 The blocks « current release », « future release » and « list of production directories » are
optional. Their presence depends on the contents of the local data warehouse.

An example of a report is given in the following section, relating to a bank with a version in
production (current) and a version being updated (future release):
#----------------
Properties used For the last session
#----------------
Keyname :estMM8_HG18_CANFAM2
Description :"EST : Dog (Canis familiaris), Human
(Homo Sapiens), Mouse (Mus musculus)"
#----------------

First utilisation :22-09-2007 00:00:13

Url :ftp://hgdownload.cse.ucsc.edu//goldenPath
Remote regular expression :canFam2/bigZips/est.fa.gz
hg18/bigZips/est.fa.gz mm8/bigZips/est.fa.gz
Remote excluded regular expression:
Local regular expression :.*
Version directory :/db/estMM8_HG18_CANFAM2
Offline directory :/db/biomaj_tmp/estMM8_HG18_CANFAM2_tmp
Log files on state file :true

#----------------
Current Release
#----------------

Release :2007-08-31
Number of session :13
Last session :03-09-2007 11:45:00
Duration :69:55:45:00
Production directory
:/db/estMM8_HG18_CANFAM2/estMM8_HG18_CANFAM2_2007-08-31
Num files downloaded :3
Bandwidth (Mo/s) :0.20482694
Download size :2,270G
Bank size :15,803G

View Last log :tail -f
/db/biomaj/Bin/log/estMM8_HG18_CANFAM2/20070903112705/mirror.log

Unparseable date: ""
<process args="'fasta/*.fa flat/*/*/*.fa' '-p F -o T -n est_dmh -t est_canfam_mm8_hg18'"
biomaj_error="false" desc="Index blast"
elapsedTime="00:31:23" exe="formatdb.bash" keyname="formatdb" name="formatdb" start="03-09-2007
10:45" type="index" value="-1" >
Unparseable date: ""

<process args="'fasta/*.fa flat/*/*/*.fa' '-p F -o T -n est_dmh -t est_canfam_mm8_hg18'"
biomaj_error="false" desc="Index blast"
elapsedTime="00:00:00" exe="formatdb.bash" keyname="formatdb" name="formatdb" start="03-09-2007
10:32" type="index" value="-1" >

Processes by metaproc:
Metaproc:[P1]
log:[/db/biomaj/Bin/log/estMM8_HG18_CANFAM2/20070903112705/postprocess.P1.log]
-->concat(concatenation des fichiers est au format fasta)
-->formatdb(Index blast)

#----------------
Futur Release
#----------------
Release :2007-09-23
Number of session :14

BioMAJ 1.2 User's Guide page: 34/71

http://www2.toulouse.inra.fr/horde2/util/go.php?url=ftp%3A%2F%2Fhgdownload.cse.ucsc.edu%2F%2FgoldenPath&Horde2=b81ad6ed37fc81818832fd63e3d7bf4e

Production directory
:/db/estMM8_HG18_CANFAM2/estMM8_HG18_CANFAM2_2007-09-23
Num files downloaded :3
Bandwidth (Mo/s) :0.07028251
Download size :2,270G
Bank size :0K

View Last log :tail -f
/db/biomaj/Bin/log/estMM8_HG18_CANFAM2/20071001161020/mirror.log

Processes by metaproc:

List production directories
20-06-2007 15:51:00
/db/estMM8_HG18_CANFAM2/estMM8_HG18_CANFAM2_2007-06-16 (6,512G)
03-09-2007 11:45:00
/db/estMM8_HG18_CANFAM2/estMM8_HG18_CANFAM2_2007-08-31 (15,803G)

Illustration 9: Result of the status command for a databank (biomaj.sh –S alu)

As you can see in the above example:

-a block of information is linked to the configuration and contains:

The name of the bank
Its description (corresponding to db.fullname)
The first session date
The download url
Files to be downloaded (regular expression)
Files to be moved in production (regular expression)

-Then two blocks associated to current and future Releases containing:

The release
The last session date
The last release’s online time
The production directory
The number of downloaded files
The bandwidth
The size of downloaded files
The size of files in the production directory
The number of files in production
The number of meta-processes applied to the workflow
The name of the session logfile.

-The last block contains:

A list of versions available locally

3.4.4 Html report
See BmajWatcher documentation.

BioMAJ 1.2 User's Guide page: 35/71

3.5 Multitenancy

Multitenancy is introduced in BioMAJ since version 1.2 through the web administration
interface. Several users can have access to different content depending on their privileges. The main
change introduced by that system is that each bank belongs to a user :

– A bank is associated to a user in the database

– The banks properties are saved under a directory named <user_login> in workflows.dir

So far the workflows.dir looked like :
<workflows.dir>

bankA.properties
bankB.properties
bankC.properties

 bankD.properties

Now :
<workflows.dir>

user1
bankA.properties

user2
bankB.properties

user3
bankC.properties

 bankD.properties

These changes do not affect the behaviour of BioMAJ. It is only the view offered by BW that is
impacted. It means that if you run an update via the console, these notions of bank ownership are
ignored.

Further information on multitenancy are available on the BW documentation.

BioMAJ 1.2 User's Guide page: 36/71

4 Workflow creation
4.1 General information

BioMAJ allows you to download a source, maintain data and run processes on this data
(warnings, indexing, reformatting, processes for logs, analysis, etc.). The workflow that follows this
processing can be configured from a single file called a properties file. BioMAJ includes a set of
pre-defined properties files for a wide range of known biological banks. This chapter covers the
contents and structure of properties files to help you create new ones.

Properties files should be located in the directory
$BIOMAJ_ROOT/conf/db_properties to be interpreted by BioMAJ.

4.2 Bank update session report
A properties file contains the attributes for the various stages in an update cycle. Its contents

shows the update cycle.

As we have seen, the update cycle is made up of five stages:

Illustration 10: Stages in the online cycle shown sequentially

(1) Initialisation: creates directories in the case of a first session and checks the consistency of
defined properties for the workflow.

(2) Pre-process: runs pre-processes defined by the administrator in a workflow.

(3) Synchronisation: gathers the bank version number and downloads new files

(4) Post-process: runs a sub-workflow of all post-processes defined by the administrator.

(5) Deployment: places the bank version online and deletes obsolete versions.

Stages 4 and 5 are run if at least one file has been downloaded or deleted from the previous
version. If the version is identical to the remote data, the update cycle does not produce a new
version.

Another stage is run when a bank version is deleted during deployment. It is a remove process
defined in a workflow by the administrator.

BioMAJ 1.2 User's Guide page: 37/71

4.2.1 Configuring the source: description / classification / location

4.2.1.1 Description and classification
The first configuration elements in a bank’s properties describe it:

e.g. alu.properties

db.fullname="alu.n: alu repeat element. alu.a: translation of
alu.n repeats"
db.name=alu
db.type=nucleic_protein
db.formats=fasta,ncbi

•db.name: short bank name.
•db.fullname: full bank name.
•db.type: type of classification.
•db.formats: list of raw data formats that make it up.

4.2.1.2 Location of data

The following properties define the bank information linked to its location in the local warehouse.

data.dir=/bank/test
dir.version=ncbi/blast/alu
offline.dir.name=BioMAJ/ncbi/blast/alu_tmp

•data.dir : root directory of the repository. Often defined globally in the global.properties file
for all sources
•dir.version: root directory for managing bank versions (db.name by default).
•offline.dir.name: temporary directory used locally for downloading and extracting files
(BioMAJ_tmp/db.name by default).

4.2.2 Configuring the data Synchronisation stage

This stage is split into sub-tasks:
1)Gather the bank version number.
2)Create a list of files relating to a version (interrogate remote server).
3)Create a list of files to be downloaded and a list of files to gather from an old version.
4)Download and copy files listed in stage 3 in a temporary directory.
5)Extract compressed data from the download.
6)Create a production directory.
7)Move temporary files (forming a new version) to the new production directory.

BioMAJ 1.2 User's Guide page: 38/71

These sub-tasks use the properties mentioned above for naming and location and new variables:

•Server address (server)
•Protocol (protocol)
•Root directory of the bank on the server (remote.dir)
•Regular expressions for remote files to be downloaded (remote.files)
•Regular expressions for remote files to exclude from the download: (remote.excluded.files)
•Regular expressions for local files for applying processing (local.files)
•File containing the bank version number (release.file)
•Regular expression for the version number (release.regexp)

4.2.2.1 Remote server and download protocol
Connecting to the remote server involves defining its properties: protocol, server and

remote.dir.
You can configure synchronisation of the source with three download protocols: ftp, http,

rsync and a local mode. The variable remote.dir is the remote directory from which the download
is taking place.

4.2.2.1.1 FTP protocol
Here is an example for configuring the download of FASTA files from the ALU bank to the

NCBI (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/):

#ftp mode
protocol=ftp

#ftp server
server=ftp.ncbi.nih.gov

#download root directory
remote.dir=/blast/db/FASTA/

In some cases, if the remote server is slow and/or overloaded, you can adapt the connection
by adding to the properties relating to the detection of a connection loss and the number of retry
attempts if communication with the server is lost.

#Time out during synchronisation stage (~20 minutes)
 ftp.timeout=1000000
#Number of reconnections to the server during synchronisation
ftp.automatic.reconnect=5

The property ftp.timeout can equal -1, in which case no timeout will be defined. The time
unit is milliseconds.

If the value of ftp.timeout is too small, the connection will not complete. An error
“java.net.SocketTimeoutException: Read timed out” will appear.

Properties associated with the download task:

BioMAJ 1.2 User's Guide page: 39/71

ftp://ftp.ncbi.nih.gov/
ftp://ftp.ncbi.nih.gov/

#Number of download threads
files.num.threads=3

These properties are also valid for the http protocol!

The property file.num.threads defines the number of parallel downloads authorised by the
application.

4.2.2.1.2 HTTP protocol
HTTP protocol is special because it is fairly hard to preview html pages and therefore the

attributes of the file and remote server. BioMAJ allows you to redefine a regular expression for
parsing a directory (http.parse.dir.line) or file (http.parse.dir.line) and select groups for
gathering attributes (http.group.dir.name, http.group.dir.date, http.group.file.name,
http.group.file.date, http.group.file.size).

#http mode
protocol=http

#http server
server=astral.berkeley.edu

#root download directory
remote.dir=/pdbstyle-1.71

#regular expression for parsing a directory
http.parse.dir.line=<img[\\s]+src=\"/icons/folder.gif\"[\\s]+alt=\"\\
[DIR\\]\".*href=\"([\\S]+)/\".*([\\d]{2}-[\\w\\d]{2,5}-[\\d]{4}\\s[\\d]{2}:
[\\d]{2})

#regular expression for parsing a file
http.parse.file.line=<a[\\s]+href=\"([\\S]+)\".*([\\d]{2}-[\\w\\d]{2,5}-[\\d]
{4}\\s[\\d]{2}:[\\d]{2})[\\s]+ ([\\d\\.]+[MKG]{0,1})

#directory name matches group 1 contained by http.parse.dir.line
http.group.dir.name=1

#directory date matches group 2 contained by http.parse.dir.line
http.group.dir.date=2

#file name matches group 1 contained by http.parse.file.line
http.group.file.name=1

#file date matches group 2 contained by http.parse.file.line
http.group.file.date=2

#file size matches group 3 contained by http.parse.file.line
http.group.file.size=3

This example shows parsing of an html page from the following url:
http://astral.berkeley.edu/pdbstyle-1.71.

It includes the following link that matches directory 0g dated 31-Oct-2006 07:52:

BioMAJ 1.2 User's Guide page: 40/71

http://astral.berkeley.edu/pdbstyle-171

 0g/ 31-Oct-
2006 07:52-

The property http.parse.dir.line contains the regular expression for parsing this line. The
value http.group.dir.name (1) gets the first bracketed group from http.parse.dir.line (([\\S]+/) is
equal to « Og » in our example) and the value of http.group.dir.date (2) gets the second bracketed
group from http.parse.dir.line (([\\d]{2}-[\\w\\d]{2,5}-[\\d]{4}\\s[\\d]{2}:[\\d]{2}) equals « 31-
Oct-2006 07:52 »).

In the same way, http.parse.file.line recognises the following html link:
d10gsa1.ent28-Oct-2006 00:00 82K

The main restrictions for using http with BioMAJ are:
•If a directory exists, the name and creation date of this directory must be present.
•The directory name and creation date must be on the same line.
•The name, date and file size must be present.
•The name, date and file size must be on the same line.
•A date must be recognised by one of these three regular expressions:

•[\\d]{2}-[\\d]{2}-[\\d]{4}\\s[\\d]{2}:[\\d]{2} (e.g.: 02-04-2006 02:00)
•[\\d]{2}-[\\w]{3}-[\\d]{4}\\s[\\d]{2}:[\\d]{2} (e.g.: 02-Apr-2006 02:00)
•[\\d]{2}-[\\d]{2}-[\\d]{4}\\s[\\d]{2}:[\\d]{2}:[\\d]{2} (e.g.: 02-04:2006 02:00:00)

•A size must be recognised by the following regular expression:
•[\\d]+ ((\\.|,)[d++])? (G|M,K)? (ex: 82K ; 82 ; 1,2M ; 1.2M)

You can also redefine some properties for downloading: file.num.threads (see ftp protocol
above).

4.2.2.1.3 Direct HTTP protocol
That protocol is a variation of the HTTP protocol. It allows one to download the content of a
dynamic web page. Hence, with this protocol you can only download one « file ».
Some parameters have been added to build the URL BioMAJ will retrieve the content from.

Example to retrieve the content of : www.biomart.org/biomart/martservice?query=some_xml

protocol=directhttp

server=www.biomart.org
remote.dir=biomaj/martservice

url.method=POST
url.parameters=query
query.value=some_xml

target.name=output.txt

The parameter target.name is the name of the file the downloaded content will be saved under.
If not defined, the default value will be data.

The last modification date and the size of the page content are handled differently from the other
protocols. These values are retrieved from the page http header.
The release number is built from the « Last-Modified » parameter.

BioMAJ 1.2 User's Guide page: 41/71

The size is retrieved from the « Content-Length » parameter.

4.2.2.1.4 Sftp protocol
Sftp uses mostly the same parameters as ftp. username and password parameters are

required for the authentication.

protocol=sftp
server=test.server.com
port=22
username=test
password=test
remote.dir=/test/banks
files.num.threads=2

4.2.2.1.5 Amazon S3 protocol

You can download files from the cloud with BioMAJ. It works for any S3 based storage service. It
has been tested against the amazon servers but also an EucalyptusWalrus server.
The parameters used are SFTP ones :

protocol=s3
server=my.walrusserver.com/services/Walrus
port=8773
username=id
password=key
remote.dir=/bucket1
remote.file=.*

To access the root, specify remote.dir as '/'. You will then be able to specify any bucket in
remote.files.

Additional properties for S3 configuration are available in $BIOMAJ_ROOT/jets3t.properties.

4.2.2.1.6 Rsync protocol
Example of enzyme bank download on bio-mirror with rsync.

#rsync mode
protocol=rsync

#rsync server
server=bio-mirror.net

#root download directory
remote.dir=/biomirror/enzyme/

Operation is similar to other protocols. For the time being, you cannot specify options for the
rsync utility.

Rsync protocol is only used as a downloading protocol. Management of the difference
between the mirror and the production directory is carried out by the data synchronisation
stage in BioMAJ.

BioMAJ 1.2 User's Guide page: 42/71

4.2.2.1.7 Local protocol
local mode (copy files on the local machine)
protocol=local
one value is valid: localhost for this mode
server=localhost
#directory containing the data
remote.dir=/local/

This protocol can be very useful for generating a bank version from the data already present
on the server that is hosting BioMAJ.

This protocol can help define process workflows for local data and supervise and monitor
processes using BioMAJ functions.

4.2.2.2 Building download filters (remote.files/local.files)
Tasks 2) (creating a list of files on a remote version) and 3) (creating a list of files to be

downloaded and getting a remote version) from the synchronisation stage use regular expressions in
java (for more information, see SBIOMAJ_ROOT/doc/regexp.pdf).

These expressions are used to define the flow of files for later tasks (4), 5) and 6)). These two
flows relate to files to be transferred from the remote server (remote.files property) and to the files
to be transferred from the temporary directory to the future bank version directory (local.files
property).

Using regular expressions, you can tell BioMAJ the files that need processing. You can thus
just download a few files on a server and exclude others.

Illustration 11: Definition of remote.files and local.files properties

Example defining the bank PFam:
remote.files=^Pfam.*\\.gz$ ^swisspfam\\.gz$ ^version.*$
^pfamseq\\.gz$

local.files=^Pfam.*$ ^swisspfam.*$ ^version.*$ ^pfamseq.*$

In the above example:

BioMAJ 1.2 User's Guide page: 43/71

The regular expression remote.files selects files on the remote server with the name:
Pfam.*.gz , swissfam.*.gz , version.*, pfamseq.gz

Then the regular expression local.files selects files with the name: Pfam.*, swissfam.*,
version.*, pfamseq.* to create a list of files to be replaced.

Illustration 12: Using the property remote.excluded.files

It is sometimes easier to say that you want to download everything except certain files. There
is a third property, therefore, (remote.excluded.files) that will exclude unwanted files from the
property remote.files.

Here is another example taken from the workflow « Genome Anopheles gambiae (NCBI) »
(Anopheles_gambiae.properties). This example shows how to obtain specific sub-directories:

#files to be downloaded from server
remote.files=^CHR_[\\w]+/.*$ ^maps/mapview/.*$ ^SNP/.*$
#files to be excluded from the transfer
remote.excluded.files=.*\\.asn.*
#files to be transferred to the bank version directory
local.files=[\\w]+$ [\\w+]/[\\w]+$ [\\w+]/[\\w+]/[\\w]+$

The regular expression above selects directories beginning with CHR and the files they
contain as well as the contents of the directory maps/mapview . Note that *.asn files are not
downloaded (cf. remote.excluded.files).

One example of a production directory result is:

${dir.version}/current/flat/:
CHR_2/
NC_009071.gbk, NC_009071.faa,...

CHR_3/
NC_009072.gbk,NC_009072.faa,...

CHR_MT/
NC_002084.gbk,NC_002084.faa

CHR_X/
NC_004818.gbk,NC_004818.faa

BioMAJ 1.2 User's Guide page: 44/71

maps/
mapview/
cyto.md,cytosat.md,cytoscf.md,...

SNP/
mosquito_snp_20020625,mosquito_snp_readme.txt

 (*.asn files are not downloaded)

4.2.2.3 Getting a version number
For each cycle, BioMAJ tries to get or create a version number at the start of the file

synchronisation stage.

There are three ways of getting this number:

By default, the version number matches the date of the most recent file from the list of
files to be downloaded.
The version number is contained in a file (release.file, release.regexp and
release.file.compressed must be defined).
The version number is contained in the file name (release.regexp must be defined).

Some examples:
#GenbankRelease: number in the file GB_Release_Number

release.file=GB_Release_Number

release.regexp=[\\d]+

release.file.compressed=false

The result of this search gets numbers matching the version number of genbank from the file
GB_Release_Number.

Another example with the enzyme bank:

The file containing the version number is enzuser.txt

Regular expression is a date in the following format:24-Jul-2007
#Enzyme: date in the file enzuser.txt

release.file=enzuser.txt

release.regexp=[0-9]{2}-[\\w]{2,5}-20[0-9]{2}

release.file.compressed=false

You can also get the version number that is not necessarily on the server holding the data. The
file containing the enzyme bank version is found via a protocol and a different location.

BioMAJ 1.2 User's Guide page: 45/71

#ftp protocol for download
protocol=ftp
server=ca.expasy.org
remote.dir=/databases/enzyme/

#you can use another protocol than that used for download, e.g. with rsync,
etc.
release.file=rsync://bio-mirror.net/biomirror/enzyme/enzuser.txt.Z
release.regexp=[0-9]{2}-[\\w]{2,5}-20[0-9]{2}
release.file.compressed=true

#files to download from the ftp server
remote.files=.*\\.txt$.*\\.dat$.*\\.get$
remote.excluded.files=

Since version 0.9.3.0, it is possible to recover a part of the regular expression through the
parenthesis:

Example with UniProt :

release.file=reldate.txt

#On récupère seulement le groupe parenthése

release.regexp=UniProt\\sKnowledgebase\\sRelease\\s+([\\d]+\\.*[\\d]*)

In a large number of the instances shown in this chapter, an understanding of regular
expressions in java is indispensable. For more information on this syntax, see
$BIOMAJ_ROOT/doc/regexp.pdf

4.2.2.4 Viewing data

Data consolidation is intended to gather all data locally in the production directory.

The download stage requires a list of files from the version on the remote server to be
generated. This list is created during stage 2 and will define a list of files to be downloaded and a
list of files to be gathered locally (stage 3).

BioMAJ 1.2 User's Guide page: 46/71

http://www2.toulouse.inra.fr/horde2/util/go.php?url=rsync%3A%2F%2Fbio-mirror.net%2Fbiomirror%2Fenzyme%2Fenzuser.txt.Z&Horde2=dd427ebd5304a8252267271c5462d16d

Illustration 13: Synchronisation stage
Several properties are involved in the process

remote remote.files= regular expression
remote.excluded.files= regular expression
local.files= regular expression filter files to be moved from the directory offline.dir.name
to the release flat directory.
No.extract=true| false
offline.dir.name = temporary work directory
do.link.copy=true|false

When files are downloaded, these files are extracted to a temporary directory
(offline.dir.name). The property no.extract (true|false) tells BioMAJ to go to the extraction stage.

Files defined using remote.files and remote.excluded.files, which are in common with the
new and old version, are copied or symbolically linked in the temporary work directory during the
task versionsmanagement .

(The property do.link.copy=true is for choosing between the link and the copy).

Then the task versionsmanagement creates in the production directory (dir.version), the
directory for the new version. The name of the new version is determined by the properties
definition shown in 4.2.2.3. Finally, versionsmanagement positions the link future_release in the
newly created directory.

To finish the task, move ends data consolidation. It moves all or some of the files from the
temporary directory to the directory future_release/flat. The list of files to be moved is determined
by the regular expression given in the property local.files.

At this stage, the raw data from the new release is available locally for carrying out the next
stage. The post-process can then begin.

BioMAJ 1.2 User's Guide page: 47/71

When there are a large number of source files (several thousand if these files are not tar, zip or
rar archives or similar), activating the property log.files =false will considerably reduce the size of
the xml log file and thus optimise application operation.

4.2.3 Configuring the pre, post & remove processing stages

4.2.3.1 General operation
Raw data is available in data.dir/dir.version/future_release/flat.

BioMAJ defines relatively complex post-processing topological workflows. These definitions
use three types of element: blocks, meta-processes and processes. Pre-processing and remove
processing use two of these elements: meta-processes and processes. Blocks support for pre and
remove processing might be implemented in a future version.

The workflow is a series of blocks that are carried out in order. A block contains one or more
meta-processes. Meta-processes in a block are run in parallel.

A meta-process contains a list of processes (jobs, processes or warnings, etc.) that are carried
out in order. This structure defines a complex workflow represented by a directed acyclic graph or
DAG. Sequential and parallel alternation is useful for process synchronisation (« meetings »
between processes) and running processes at the same time to make the most of current machine
performance (multiprocessors and clusters).

BioMAJ 1.2 User's Guide page: 48/71

Illustration 14: schematic diagram of workflows for pre- and post-processes: dependencies
between blocks, meta-processes and processes in BioMAJ.

These stages help run a range of processes (synchronous or asynchronous) before (pre-
processing) or after (post-processing) making the bank available, or after (remove processing)
deleting a bank version. These processes can be informative (sending an e-mail) or create indexes,
provide format conversions for raw data, extract data or create reports and so on.

4.2.4 Defining elements

4.2.4.1 Block
A block is defined by a name. The list of post-processing blocks is given with the property

BioMAJ 1.2 User's Guide page: 49/71

Begin

Block 1

Block 2

Block .. n

End

Meta-process

Processus

BLOCKS.

e.g.

BLOCKS= A,B,C
In this example, three blocks A, B and C are defined in the workflow. Their order determines

the order in which they are run.

The property BLOCKS must be given in capital letters !

4.2.4.2 Meta-process
•Declaration

A block’s meta-processes are given in a property that describes the block name followed by
.db.post.process

A.db.post.process=META1,META2
B.db.post.process=META3
C.db.post.process=META4

In the above example, four meta-processes are defined in the workflow:

- 2 in block A (META1, META2)

- 1 in block B (META3)

- and the meta-process META4 is given in block C.

Note that for pre-processing and remove-processing, meta-processes are defined using
db.pre.proccess and db.remove.process respectively (without any block prefix).

•Initialisation
Then the processes for each meta-process are given

e.g.
META1=P1,P2
META2=Z1
META3=P3,test7
META4=message

In this example:

2 processes P1 and P2 are given in META1. The process Z1 is declared in META2. META3
contains two processes, P3 and test7. META4 contains one process called « message ».

Each meta-process and process has a unique name. It is made up of a freeform
character string ([a-z,A-Z,0-1]) without spaces. The process declaration order defines the
order in which they are run in the meta-process.

4.2.4.3 Process
Then each declared process needs to be defined in the meta-processes:

BioMAJ 1.2 User's Guide page: 50/71

Each process is defined by six attributes: name, executable, arguments, description, type and
cluster. Each attribute is defined in a property named after the process it refers to. The property
extension is fixed:

 process.name: process name

 process.desc: process description

 process.type: process type
 process.exe: absolute path of an executable (or relating to $BIOMAJ_ROOT/conf/process)

 process.args: executable parameters

 process.cluster: Can be “true” of “false”. If enabled; the process will be submitted to the
default queuing system. This property is not mandatory. Its default value is “false”.It is
assumed that your queuing system is correctly configured and that the possibly required
environment variables are set.

So for a sample process <MYprocess> we have:

MYprocess.name= MYprocess
MYprocess.desc= test process
MYprocess.type=test
MYprocess.exe=Myshell.sh # this script must be placed in the directory

 # $BIOMAJ_ROOT/conf/process

MYprocess.args= -a
MYprocess.cluster=true

It is possible to give properties as argument.

Example :

print.name=echo
print.exe=echo
print.args=Bank : ${db.name} VERSION : ${dir.version} RELEASE : ${remote.release}
print.desc=Affichage des proprietes du workflow
print.type=Affichage

Will print:

Bank : alu VERSION : TEST RELEASE : 2008-01-31

If we consider the example given above, 7 processes must be defined:
P1,P2,Z1,P3,test7,message

The bank properties file will contain 35 declarations (5X7).

P1 P1.name, P1.desc, P1.type, P1.exe, P1.args

P2 P2.name, P2.desc, P2.type, P2.exe, P2.args

BioMAJ 1.2 User's Guide page: 51/71

Z1 Z1.name, Z1.desc, Z1.type, Z1.exe, Z1.args

P3 P3.name, P3.desc, P3.type, P3.exe, P3.args

Test7 test7.name, test7.desc, test7.type, test7.exe, test7.args

Message message.name, message.desc, message.type, message.exe,
message.args

Z1 Z1.name, Z1.desc, Z1.type, Z1.exe, Z1.args

Note that the order of declaration is not important. They must however all be declared. Two
processes can use the same executable.

BioMAJ 1.2 User's Guide page: 52/71

4.2.5 Workflow example from scripts available in BioMAJ

Illustration 15: Running processes with BioMAJ

The example uses four post-processes:

All scripts are distributed with the application:

formatdbTLSE.pl: format blast bank

Documentation: $BIOMAJ_ROOT/doc/process/formatdbTLSE.html

gb2fasta.sh: generate fasta file from blast indexes

indexSrsTLSE.pl: format banks for SRS

BioMAJ 1.2 User's Guide page: 53/71

Documentation: $BIOMAJ_ROOT/doc/process/indexSrsTLSE.html

sendMailTLSE.pl: send e-mail.

Documentation: $BIOMAJ_ROOT/doc/process/sendMailTLSE.html

Configuring the properties file:

#Meta-processes define all processes (run sequentially)

FASTA=gbtofasta

BLAST=formatdb,postmailFormatdb

SRS=indexSRS,postmailSRS

#DEFINING PROCESSES FOR FASTA

#--

gbtofasta.name=gb2fasta

gbtofasta.exe=gb2fasta.sh

gbtofasta.args=

gbtofasta.desc=Index blast

gbtofasta.type=index

#DEFINING PROCESSES FOR BLAST

#--

#define the process formatdb

formatdb.name=formatdbTLSE

formatdb.exe=formatdbTLSE.pl

formatdb.args= '*.seq' '.seq' gb

formatdb.desc=Index blast

formatdb.type=index

#define the process postmailFormatdb

postmailFormatdb.name=sendMail

postmailFormatdb.exe=sendMailTLSE.pl

postmailFormatdb.args=-s '[EBI - db.name remote.release] End Post Process formatdb' -m 'local.time'

BioMAJ 1.2 User's Guide page: 54/71

#Definition des blocs, qui seront exécutés (exécution séquentielle)

BLOCKS=BLOCK-FASTA,BLOCK-INDEX

#Le bloc BLOCK_FASTA est composé d'un meta-process

BLOCK_FASTAdb.post.process=FASTA

#Le bloc BLOCK_INDEX est composé de deux méta-processus qui seront exécutés en parallèle

BLOCK_INDEX=SRS,BLAST

postmailFormatdb.desc=mail

postmailFormatdb.type=info

#DEFINING PROCESSES FOR SRS

#--

#défine process indexSRS

indexSRS.name=indexSRS

indexSRS.exe=indexSrsTLSE.pl

indexSRS.args=-v -d genbankrelease --pvm --execute pbs -c 6

indexSRS.desc=Index srs

indexSRS.type=index

#define process postmailSRS

postmailSRS.name=sendMail

postmailSRS.exe=sendMailTLSE.pl

postmailSRS.args=-s '[EBI - db.name remote.release] End Post Process formatdb' -m 'local.time'

postmailSRS.desc=mail

postmailSRStype=info

4.2.6 Deployment
This stage involves the following operations:

- Delete the link future_release (used after the synchronisation stage and by the post-processing
stage)
- Apply the rights defined by the property production.directory.chmod to the new version.
- Create or move the link current_release.
- Delete obsolete versions, i.e. those above the property keep.old.version
- For each deleted version, remove processes will be launched

e.g.
if keep.old.version = 0 then the current version will be deleted after a new version has been
built.
If keep.old .version =1 then the programme will keep two versions. The current version and the
previous one.

Given how the BioMAJ cycle works, it is important to note that just before deployment,

BioMAJ 1.2 User's Guide page: 55/71

a version is present in the directory future_release. To work, even if keep.old.version = 0,
BioMAJ will need free space equal to the size of both versions!

4.3 Information overload: global.properies

The properties files global.properties2 is used to define information common to all banks
maintained by the application. For the needs of a specific source, you can redefine some properties
in the bank properties file to adapt BioMAJ’s behaviour to the context.

Engine parameter:
•Number of workflows to run in parallel (bank.num.thread): BioMAJ can run workflows in
parallel during the same session, this property limits the number of banks accessing remote
servers.

Log generation:
•Generate task name in logs (historic.logfile.task)
•Generate meta-task name in logs (historic.logfile.target)
•Generate all ant properties in a workflow (historic.logfile.properties)
•Generate logs corresponding to a daily update level (historic.logfile.level)

Organising data / data transfer policy:
•Root directory for all banks (data.dir): this is /db in the examples given.
•Access rights to files in production (production.directory.chmod)
•Number of release versions to keep in production (keep.old.version)
•Method of getting local files by symbolic link or copy (do.link.copy)

Executables path:
•Tar executable (tar.bin)
•gunzip path (gunzip.bin)
•bunzip path (bunzip.bin)

Release format:
•the release format if a data gathering policy is the date of the most recent file
(release.dateformat) (see
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html)

Warning mail:
•smtp server for sending mail (mail.smtp.host)
•administration mail (mail.admin)
•mail from an administrator (mail.from)

Default properties of ftp/ http protocols:
•Number of files to download concurrently (file.num.thread)

Default properties of the ftp protocol:
•Default port (port)

2 An example of global.properties file is presented as an annex.

BioMAJ 1.2 User's Guide page: 56/71

•Username (username)
•Password (password)
•Define a timeout (ftp.timeout)
•Number of automatic reconnections (ftp.automatic.reconnect)

Default properties of the http protocol:
•Regular expression for an html link with a directory (http.parse.dir.line)
•Regular expression for an html link with a file with attributes (http.parse.file.line)
•Group number in brackets matching directory name (http.group.dir.name)
•Group number in brackets matching directory date (http.group.dir.date)
•Group number in brackets matching file name (http.group.file.name)
•Group number in brackets matching file date (http.group.file.date)
•Group number in brackets matching file size (http.group.file.size)

4.4 Computed bank : bank dependencies

Since version 1.1.2, BioMAJ fully integrates the notion of computed bank, hence, of bank
dependencies.

A computed bank is a bank (child bank) that is built from others (parent banks). Such a bank has
special parameters to access the content of its parents banks. It also means that updating the child
bank triggers the update of the parent banks (dependency).

Updating Bank A will trigger the update of Bank B, Bank C, Bank D, which will trigger the update
of bank E.

A computed takes as its source its parent banks and only its parent banks. It means that if you
declare your bank to be computed, you cannot download files from an FTP server for example, you
will need an intermediate bank to do that.

Here is how you declare a computed bank :

db.source=b,c,d
b.files.move=**/*
c.files.move=flat/file1 flat/file2
ref.release=d

The only mandatory property is db.source. Its presence labels the bank as « computed », and all
non related parameters will be ignored (server, remote.dir, remote.files).

BioMAJ 1.2 User's Guide page: 57/71

Illustration 16: Bank dependencies

BANK A

BANK DBANK B BANK C

BANK E

The properties <bank name>.files specify what files of the given bank should be copied in
the target bank production directory. The path is relative to the production directory current release
root. To copy all the files under <production_directory>/current/flat, you need to write
flat/.*, not just .*.

The target bank production directory will look like :

<production directory>
current

flat
b

flat
file1
file2

c
...

The property ref.release specifies which bank release number should be taken as the target bank
release. If this value is not specified, the release is the current date.

In addition, during the post-processing phase, environment variables that contain the current
production directory of each parent bank are generated. Their name has the following form: <parent
bank name>source, for example « pdbsource » if the parent bank name is « pdb ».

BioMAJ 1.2 User's Guide page: 58/71

5 Developing and integrating post or
pre-processes

Illustration 17: BioMAJ process communication

BioMAJ can run user scripts/binaries. The engine interacts with scripts by defining
environment variables. To be usable, executables must be placed in the directory
$BIOMAJ_ROOT/conf/process.

As we have mentioned, during post- and pre-processing stages, BioMAJ launches a system
call to programs and monitors their function. By default, BioMAJ simply gets the return value at the
end of the program run. If the value is null, the engine thinks everything went well and runs the next
process. If the return value is not null, the process receives an error status and the update cycle is
stopped. The processes already run concurrently will be stopped at the next sync point (end of block
or meta-process).

It is however possible to go further and increase interaction between the engine and processes.
To do this, you need to take into account the following specifications in developing the program
code.

Integration includes three parts:

•Messaging
•Temp file management
•Using BioMAJ session context

These three parts will allow you to develop processes that fully use the capacities of the
BioMAJ engine.

5.1.1 Communication management: messaging
For communication with the administrator, BioMAJ uses three types of message: standard

information, warning messages and error messages.

•Standard information is informative messages.
•Warning messages draw attention to a specific event. They are not for serious errors
requiring the session to halt but they need to be brought to the attention of the
administrator so they can make a decision if necessary (after the end of the session).
•Error messages are created when the application detects a fatal error stopping operation.
This is often the last action carried out before the session stops.

BioMAJ 1.2 User's Guide page: 59/71

BioMAJ Process

System call
système

Messages

Environment variables are used to tag messages sent and class them in one of the three
levels: INFO,WARNING and ERROR.

To send a messages on the INFO and ERROR channels, you just need to use classic Unix
commands or those in your development language to write on the standard output for the INFO
channel and the standard error output for ERROR.

To write a warning message, on the WARNING channel, you just need to tag your warning
message adding the environment variable PP_WARNING upstream.

Example in perl:

Info → print STDOUT msg
Warning → print STDOUT ENV{PP_WARNING}msg
Error → print STDERR msg
PP_WARNING to message and display it on the standard output.

Example in csh:

echo "INFO exit »
echo $PP_WARNING"This is a warning"
echo "error output" 1>&2

BioMAJ logs this information (by writing on the file system). Intensive use of messages
can mean a slowdown when using the application’s verbal mode.

5.1.2 Managing dependencies of produced files
By default, BioMAJ draws up a list of files from versions it is monitoring. It uses this

information to optimise re-running of a workflow. It can use a file dependency mechanism attached
to a process. Each process must then declare the files that it generates. In the case of a re-run,
BioMAJ re-runs the processes if the declared files have not been found.

Files produced during processing can be placed in three categories: declared files, temporary
files and unknown status files.

-Unknown status files are in the directory structure. BioMAJ does not recognise them and
they are not declared.

-Temporary files are deleted at the end of a session. These are volatile files that disappear at
the end of a cycle.

-Declared files are usually results files that match the process results.

The programme can, via declaration, delegate actions to the engine such as file integrity
checks or temporary file deletion. To carry out this delegation, the program must declare the files it
is using to the engine as well as their type (volatile = temporary and result). Dependency signifies
that the generated file will exist in the production directory after the bank has been placed online. A
volatile dependency signifies that the file will be deleted once the workflow has been run. The latter
is also used for managing temporary files used by several processes (e.g. file concatenation and
results indexing).

Declaration uses the same principles as those used for messages. This is a message with a tag
written on the standard output of the program that is run.

BioMAJ 1.2 User's Guide page: 60/71

Messages have the following structure:

Declaration of dependencies:

echo $PP_DEPENDENCY$AbsoluteFilepath

echo $PP_VOLATILE_DEPENDENCIES$AbsoluteFilepath

In PERL, you just need to create a function that declares file dependencies.
Final results file → print STDOUT ENV{PP_DEPENDANCY}file
Volatile (temporary) file → print STDOUT ENV{PP_VOLATILE_DEPENDANCY}file

BioMAJ deletes the declared volatile files and it is not recommended to delete
them manually.

5.1.3 Context to script: information on the version number

While running each process, BioMAJ makes several environment variables available for the process
being run. These help transit a part of the update cycle context and give dynamic information
relating to the new bank version. The list of variables follows:

 dbname: bank name
 datadir: root directory for all production directories
 offlinedir: temporary directory
 dirversion: production directory for the bank containing all versions already
downloaded and the future version.
 remotedir: remote server directory
 noextract: Boolean telling whether the downloaded files are extracted
 localfiles: downloaded files that will be available during production
 remotefiles: regular expression for downloaded files
 mailadmin: administration mail
 mailsmtp: smtp server for sending mail
 remoterelease: version number (available only for post-processes)
 removedrelease: removed version number (available only for remove processes)
 PATH_PROCESS_BIOMAJ: post processes root directory.
 PATH_LOG_BIOMAJ: log directory path defined in file general.conf.
 PATH_WORKFLOW_BIOMAJ: workflow files (.properties) directory.
 RELEASE_ALL_COMPRESSED_FILES_LIST: Downloaded release files list (a sort of
distant ls).
 RELEASE_ALL_UNCOMPRESSED_FILES_LIST: List of generated files in flat
directory of the current version.
 RELEASE_OLD_FILES_LIST: List of files copied from previous release (part of
RELEASE_ALL_UNCOMPRESSED_FILES_LIST).
 RELEASE_NEW_FILES_LIST: List of newly downloaded files (the other part of
RELEASE_ALL_UNCOMPRESSED_FILES_LIST).

RELEASE_ALL_UNCOMPRESSED_FILES_LIST = RELEASE_OLD_FILES_LIST +
RELEASE_NEW_FILES_LIST

BioMAJ 1.2 User's Guide page: 61/71

To obtain the last four environment varariable, you have to set the property list.files.available
on true

A few conventions and uses of these variables:
Downloaded data can be found in $datadir/$dirversion/future_release/flat

To use the version in production: $datadir/
$dirversion/current_release/flat

When indexing, create a directory under $datadir/
$dirversion/future_release/ containing the index name (e.g. $datadir/
$dirversion/future_release/blast) and generate files in this directory.

5.1.4 Return code
In the event of an error being detected, the script should return a non-null code to stop the

workflow.

5.1.5 Debugging
A new properties file can be created stage by stage using the following command:

BioMAJ .sh –d <dbname> --stage <preprocess|sync|postprocess|deployment>

The --stage option refers to the session stop point.

Unlike the standard update command, the cycle will be stopped at the stage specified.

5.2 Virtual bank concept
This is an alias containing several independent banks.

e.g. genbank = genbank + genbank_new
biomaj.sh –d genbank,genbank_new

Or create a property file for your virtual bank, and add the following line:

virtual.list=genbank, genbank_new

Two sessions are opened independently of one another ;

The list of banks can be more than two. To avoid network saturation, the number of sessions
open is limited by the property bank.num.thread.

BioMAJ 1.2 User's Guide page: 62/71

6 Metadata and classification of
sources and processes

6.1 Definition

•Metadata:
According to Wikipedia, metadata (from the grec meta "after" and latin data "informations")

is donnée that defines or describes other data.

•Classification diagram:
A classification diagram is a description of an organisation or division of objects into groups

based on common characteristics of objects.

6.2 BioMAJ implementation
BioMAJ is intended to manage sources and monitor their maintenance. Properties have

metadata functions to classify sources and processes. They are variables defined in the properties
file during declaration of the source and each process.

Source

Sources can be placed in a classification structure.

One part of the structure is defined by its BioMAJ name, the dbname, its description,
db.fullname and data format, db.formats.

Classes are defined in the variable db.type.

e.g. db.fullname="Genome Gallus gallus (NCBI)"

db.name=Gallus_gallus

db.type=genome

db.formats=gb,fasta,gff

Post-processing

For information, the property db.type can contain classification of the type:

type1/type2/type3: i.e. « type2 » is a sub-type of « type1 » and « type3 » is a sub-type
of « type2 ».

Classification examples:
db.type=genome/eucaryote

db.type=genome/bacteria

db.type=nucleic

db.type=proteic

Post-processing also has a similar classification system. Each post-process has a classification

BioMAJ 1.2 User's Guide page: 63/71

http://fr.wikipedia.org/wiki/Donn%C3%A9e
http://fr.wikipedia.org/wiki/Data
http://fr.wikipedia.org/wiki/Latin
http://fr.wikipedia.org/wiki/M%C3%A9ta_(pr%C3%A9fixe)
http://fr.wikipedia.org/wiki/Grec_ancien

and description field: e.g.
process.name=Ncbi_blast_index
process.desc=bank format for ncbi blast
process.type=blast

Each time it is run, session production takes on these attributes. They are stored in the status
file for the bank and in an index file (generated by the option --index) that contains an overview of
bank versions contained in the local warehouse.

6.3 Potential uses
BioMAJ metadata can be used on several levels to help the user or applications to better

retrieve the contents of the local warehouse. For example, when generating reports to classify
sources.

Properties files sent with BioMAJ are arranged in five groups: nucleic, proteic,
nucleic_proteic, genome, and other.

These groups can be found in the web report. More complex classifications are possible,
especially for genomes. It should be possible to attach each genome to its taxonomic classification
node and thus improve classification information.

Another application involves making more intensive use of data. Work still has to be done on
this but it could be advantageous to make the use of formats and types of post-processes to connect
applications and data sources. You could then use the index file to automate configuration of some
applications or simply let the user interrogate the warehouse with data format.

BioMAJ 1.2 User's Guide page: 64/71

7 F.A.Q
1) My workflow is not working any longer

Check the status of the workflow (biomaj.sh -S dbname) then analyse the logs
(repertoire $BIOMAJ_ROOT/log/[dbname]/[date]).

2) The session is still updating
Check that BioMAJ is still working: ps -aux | grep biomaj

 If the application has stopped, see the previous question.

3) How do I automate BioMAJ operation?
Just place a call to biomaj in your crontab (cf. manual)

4) How can I easily monitor application operations?
biomaj.sh -S Mybank et make_biomaj_report.sh all .
See results in the directory $BIOMAJ_ROOT/rapport.

5) How can I use a properties file?
Create your file in $BIOMAJ_ROOT/conf/db_properties.
Run the workflow step by step using the command:
biomaj.sh -d <dbname> --stage sync
to validate each stage. Verbose mode can be useful also.

6) How can I develop a new post-process?
Use the language of your choice and in the script source get the environment variables for

the BioMAJ session to get all session context information. Create a results directory and launch the
system call, taking care to place the results in this directory. For more information, see Manual
chapter 5.

7) How does BioMAJ monitor post-processes?
biomaj.sh --status <dbname> ; then create a –f tail on the log file

associated with the post-process.

8) How does version number detection work?
If nothing is defined for getting version numbers, the version number will be the date of the

most recent file on the remote server (this file must be expressed in the property remote.files)
This value can be set with the property release.dateformat and takes as its default value:

yyyy-MM-dd

9) My log files are too large. What shall I do?
biomaj.sh --clean-statefile <dbname> to clean up unnecessary information.
Delete the directory $BIOMAJ_ROOT/log/[dbname]

10) How can I generate a bank from data that is already there?

BioMAJ 1.2 User's Guide page: 65/71

Use the calculated bank notion. (cf. Manual 5.2.2)

11) How do I know which banks are updating?
biomaj.sh -S --updating

12) How do I find out a bank’s update frequency?
If the crontab call is regular. See bank statistics to get an indication of the frequency. See the
average update frequency value in the html report.

13) Where can I get support?
User mailing list: BioMAJ-users@lists.gforge.inria.fr, in the FAQ on the website
biomaj.gforge.inria.fr

14) How can I optimise downloading (via an ftp or http protocol) for a bank?
Change the parameter: files.num.threads. By default, three files are downloaded
simultaneously.

15) BioMAJ is slow. How can I speed it up?
Initialise the property log.files to false if a downloaded file matches an extracted file (this is not
the case for an archive tar.gz). Clean up the status file:

 biomaj.sh --clean-statefile <dbname> , do not use the console and check the
property historic.logfile.level in the file global.properties.

16) How can I restart indexing for a bank?
If the post-process manages the file’s dependencies, just delete the resulting files and restart
biomaj.sh -d <dbname> . Otherwise, rebuild the bank with the command biomaj.sh
–rebuild <dbname>.

17) How can I test my post-process?
biomaj.sh -d <dbname> --stage postprocess biomaj will run an update cycle
for the data and will stop the session after post-processing. If the data is already there, it will run
post-processing. You will receive an e-mail containing a report with any errors.

18) How do I configure blast to make it compatible with BioMAJ ?
Just create a blast bank repository directory. Then run the variable with the absolute path of the
directory export BLASTDB = MYREP/BLAST/ copy the variable in the file
$BIOMAJ_ROOT/bin/env.sh, then personalise the executables access path - formatdb,
fastacmd, blastall – in the file
$BIOMAJ_ROOT/conf/process/unix_command_system.cfg

19) How do I configure SRS to make it compatible with BioMAJ ?
Change the file srsdb.i in the application, run the following global variables ahead of the file:

dataRoot:'/bank' ==> put the value of data.dir, onData:'current/flat/', onIndex:'current/srs/',
offData:'futur_release/flat/', offIndex:'futur_release/srs/'. For each indexed bank: write the value
of the path dir.version for the bank after the path $dataroot (the repository root) for the offDir ,
indexDir and offIndexDir. dir:"($dataRoot)/ebi/uniprot/($onData)",
offDir:"($dataRoot)/ebi/uniprot/($offData)", indexDir:"($dataRoot)/ebi/uniprot/($onIndex)",
offIndexDir:"($dataRoot)/ebi/uniprot/($offIndex)"

define the following variables in the file:

BioMAJ 1.2 User's Guide page: 66/71

mailto:BioMAJ-users@lists.gforge.inria.fr

$BIOMAJ_ROOT/conf/process/unix_command_system.cfg,
EXECUTE_BATCH_OPTION_PBS_SRS=-q srsq -W block=true -A SRS -j oe -V,
GETZ=/data/srs/srs/bin/linux73/getz, SRSCHECK=/data/srs/srs/etc/srscheck.
Then initialise the SRS environment in the BioMAJ environment file:
($BIOMAJ_ROOT/bin/env.sh)source /MYPATH/OF/srs/etc/prep_srs.sh

BioMAJ 1.2 User's Guide page: 67/71

8 Appendix
8.1 Example of configuration files

8.1.1 Global.properties
File: global.properties

#----------------
Mail Configuration
#---------------
#Uncomment thes lines if you want receive mail when the workflow is finished

#mail.smtp.host=
#mail.admin=
#mail.from=

#---------------------
#Proxy authentification
#---------------------
#proxyHost=
#proxyPort=
#proxyUser=
#proxyPassword=

#---------------------
PROTOCOL
#-------------------
#possible values : ftp, http, rsync, local
protocol=ftp
port=21
username=anonymous
password=anonymous@nowhere.com

#The root directory where all databases are stored.
#If your data is not stored under one directory hirearchy
#you can override this value in the database properties file.
data.dir=/local/db2
production.directory.chmod=775
bank.num.threads=1

#
Global system properties file

#Programs
tar.bin=/bin/tar
gunzip.bin=/bin/gunzip
bunzip.bin=/usr/bin/bunzip2

#Number of threads to use for downloading and processing
files.num.threads=3

#to keep more than one release increase this value
keep.old.version=0
#Link copy property
do.link.copy=true

#look here to specified a new format :
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

release.dateformat=yyyy-MM-dd

#The historic log file is generated in log/
#define level information for output : DEBUG, VERBOSE,INFO,WARN,ERR
#to have info about target and task ant use VERBOSE
historic.logfile.level=VERBOSE
historic.logfile.properties=false

BioMAJ 1.2 User's Guide page: 68/71

historic.logfile.task=true
historic.logfile.target=true

PRE1=premail

premail.name=sendMail
premail.exe=sendMailTLSE.pl
premail.args=-s '[NCBI Blast - db.name] Start Biomaj session' -m 'local.time'
premail.desc=mail
premail.type=info

http.parse.dir.line=<a[\\s]+href=\"([\\S]+)/\".*alt=\"\\[DIR\\]\">.*([\\d]{2}-[\\w\\d]{2,5}-
[\\d]{4}\\s[\\d]{2}:[\\d]{2})

http.parse.file.line=<a[\\s]+href=\"([\\S]+)\".*([\\d]{2}-[\\w\\d]{2,5}-[\\d]{4}\\s[\\d]{2}:
[\\d]{2})[\\s]+([\\d\\.]+[MKG]{0,1})

http.group.dir.name=1
http.group.dir.date=2
http.group.file.name=1
http.group.file.date=2
http.group.file.size=3

#Needed if data sources are contains in an archive
log.files=true

local.files.excluded=\\.panfs.*

#~40mn
ftp.timeout=2000000
ftp.automatic.reconnect=2

8.2 BioMAJ properties

Properties Values Description Optional Default value Default location

proxyHost <host.proxy> Proxy adress yes optional global.properties

proxyPort <port.proxy> Proxy port yes optional global.properties

proxyUser <login> Authentification proxy login yes optional global.properties

proxyPassword <password> Authentification proxy
password

yes optional global.properties

mail.smtp.host <hostname.Domain.xx> SMTP server for sending mail yes optional global.properties

mail.admin <admin@MDomain.xx,**> Bank administrator mail No if
mail.smtp.h
ost defined

optional global.properties or
dbname.properties

Mail.from <admin@MDomain.xx> Bank administrator mail No if
mail.smtp.h
ost defined

optional global.properties or
dbname.properties

port number Indication of port for ftp
protocol

Yes 21 global.properties or
dbname.properties

username String Username for ftp protocol Yes anonymous global.properties

BioMAJ 1.2 User's Guide page: 69/71

Properties Values Description Optional Default value Default location

password String Password for ftp protocol Yes -

(Your mail!)

global.properties

ftp.timeout positive number or -1 Timeout in mms for ftp
protocol. If –1 no timeout.

Yes 100000 global.properties

ftp.automatic.reconnect Positive number Number of automatic
reconnections for ftp protocol

Yes 5 global.properties

data.dir Directory path Root directory for local banks no To be defined global.properties

production.directory.chmod String Future access rights to the
production directory

no 755 global.properties

bank.num.threads Number Bank number management no 1 global.properties

tar.bin Path and executable Tar binary path no /bin/tar global.properties

gunzip.bin Path and executable Gunzip binary path no /bin/gunzip global.properties

bunzip.bin Path and executable Bunzip binary path no /usr/bin/bunzip2 global.properties

files.num.threads Number Number of files downloaded
concurrently

no 1 dbname.properties

Log.files Boolean Logs information on
downloaded files

No True global.properties

protocol ftp,http,rsync,local Protocol used to get the bank no ftp global.properties

do.link.copy link,copy Authorises symbolic links
with production files

Yes true global.properties

keep.old.version Number Number of saved complete
releases

Yes 0 global.properties

frequency.update Number Number of days when the
bank does not need updating

Yes 0 global.properties

release.dateformat Expression DateFormat Release format

http://java.sun.com/j2se/1.4.2/
docs/api/java/text/SimpleDate

Format.html

no yyyy-MM-dd global.properties

historic.logfile.level DEBUG,VERBOSE,INFO,W
ARN,ERR

Define at display level logs
and console

Yes DEBUG global.properties

historic.logfile.properties true, false Write ant properties defined
by the application in logs

Yes false global.properties

historic.logfile.task true, false Write the name of workflow
tasks in logs

Yes false global.properties

BioMAJ 1.2 User's Guide page: 70/71

Properties Values Description Optional Default value Default location

historic.logfile.target true, false Write the name of workflow
metatasks in logs

Yes false global.properties

db.name This property must carry the
same name as the properties

file.

Name of the virtual bank no - dbname.properties

db.fullname String Full name no - dbname.properties

db.type String Bank type Yes - dbname.properties

server String Server address no - dbname.properties

offline.dir.name Path Temporary directory for
downloads and extractions

Yes (Optional)

datadir/offdir/bname_tmp

dbname.properties

dir.version Path Bank version directory Yes (Optional)
Datadir/dbname/

dbname.properties

remote.dir Path Location of the directory
where the bank is held on the

remote server

no - dbname.properties

remote.files Regular expressions Filter on the files to be
downloaded

no - dbname.properties

Remote.excluded.files Regular expressions Filter on the files not to
download that can match with

remote.files

Yes - dbname.properties

local.files Regular expressions Filter on files to be put into
production

no - dbname.properties

local.files.excluded Regular expressions Filter on files not to be put
into production

Yes -

release.file String Name of file containing the
release

Yes - dbname.properties

release.regexp Regular expressions Regular expression for getting
the release

Yes - dbname.properties

release.file.compressed true, false True if file containing the
release is compressed

Yes false dbname.properties

no.extract True,false If True, deletes the file
extraction stage for tar,gz,etc.

Yes False dbname.properties

list.files.available True,false Set up environments
varaibles:

RELEASE_ALL_COMPRESS
ED_FILES_LIST,RELEAS
E_ALL_UNCOMPRESSED_F
ILES_LIST,RELEASE_OL
D_FILES_LIST,RELEASE

_NEW_FILES_LIST

yes False dbname.properties

visibility.default private,public Default access for a bank yes private global.properies

BioMAJ 1.2 User's Guide page: 71/71

	1 Introduction
	1.1 Why BioMAJ?
	1.2 Background
	1.3 Presentation

	2 Setting up BioMAJ
	2.1 Product contents
	2.1.1 Available banks
	2.1.2 Available indexes / conversions

	2.2 Pre-requisites
	2.2.1 System and hardware
	2.2.2 Utility applications
	2.2.2.1 Software usually present on a standard Linux installation
	2.2.2.2 Software requiring special attention

	2.3 Installation
	2.3.1 Initialising environment variables
	2.3.2 Compilation
	2.3.3 Application global variables
	2.3.4 General configuration: global.properties file
	2.3.5 Database management
	2.3.6 Statefiles migration
	2.3.7 BiomajWatcher installation
	2.3.8 First run of BioMAJ
	2.3.9 Demonstrations
	2.3.9.1 Alu bank of the NCBI (with formatdb process)
	2.3.9.2 STS bank of the NCBI (with fastacmd process)

	2.3.10 BioMAJ directories
	2.3.11 Proxy Configuration

	3 Using the application
	3.1 Application behaviour
	3.1.1 Update cycle
	3.1.2 Data organisation

	3.2 Data maintenance
	3.2.1 Updating a bank
	3.2.2 Deleting one or several bank versions
	3.2.3 Changing the bank name
	3.2.4 Changing production directories
	3.2.5 Rebuilding a version
	3.2.6 Error correction
	3.2.7 Importing data
	3.2.8 Database cleanup

	3.3 Automating updates
	3.4 Warehouse monitoring
	3.4.1 E-mail alert: monitoring an update session
	3.4.2 Debugging and error identification during running
	3.4.3 Exploring in the command line: biomaj.sh --status
	3.4.3.1 Exploring the warehouse
	3.4.3.2 Exploring the status of a bank

	3.4.4 Html report

	3.5 Multitenancy

	4 Workflow creation
	4.1 General information
	4.2 Bank update session report
	4.2.1 Configuring the source: description / classification / location
	4.2.1.1 Description and classification
	4.2.1.2 Location of data

	4.2.2 Configuring the data Synchronisation stage
	4.2.2.1 Remote server and download protocol
	4.2.2.1.1 FTP protocol
	4.2.2.1.2 HTTP protocol
	4.2.2.1.3 Direct HTTP protocol
	4.2.2.1.4 Sftp protocol
	4.2.2.1.5 Amazon S3 protocol
	4.2.2.1.6 Rsync protocol
	4.2.2.1.7 Local protocol

	4.2.2.2 Building download filters (remote.files/local.files)
	4.2.2.3 Getting a version number
	4.2.2.4 Viewing data

	4.2.3 Configuring the pre, post & remove processing stages
	4.2.3.1 General operation

	4.2.4 Defining elements
	4.2.4.1 Block
	4.2.4.2 Meta-process
	4.2.4.3 Process

	4.2.5 Workflow example from scripts available in BioMAJ
	4.2.6 Deployment

	4.3 Information overload: global.properies
	4.4 Computed bank : bank dependencies

	5 Developing and integrating post or pre-processes
	5.1.1 Communication management: messaging
	5.1.2 Managing dependencies of produced files
	5.1.3 Context to script: information on the version number
	5.1.4 Return code
	5.1.5 Debugging
	5.2 Virtual bank concept

	6 Metadata and classification of sources and processes
	6.1 Definition
	6.2 BioMAJ implementation
	6.3 Potential uses

	7 F.A.Q
	8 Appendix
	8.1 Example of configuration files
	8.1.1 Global.properties

	8.2 BioMAJ properties

