
Haskore Music Tutorial

Paul Hudak
Yale University

Department of Computer Science
New Haven, CT 06520
paul.hudak@yale.edu

February 14, 1997
(Revised November 1998)
(Revised February 2000)

(Constantly mixed up in 2004 - 2007 by Henning Thielemann :-)

1

mailto:paul.hudak@yale.edu
mailto:haskore@henning-thielemann.de

Contents

1 Introduction 3

1.1 Acknowledgements . 3

2 The Architecture of Haskore 4

3 Creation of Music 5

3.1 Composing Music . 5

3.1.1 Pitch . 5

3.1.2 Music . 7

3.1.3 Duration . 9

3.1.4 Rests . 11

3.1.5 Some Simple Examples . 11

3.1.6 Trills . 17

3.1.7 Percussion . 19

3.1.8 Phrasing and Articulation . 20

3.1.9 Intervals . 22

3.1.10 Chords . 23

3.1.11 Scales . 28

3.1.12 Tempo . 30

3.2 Interpretation and Performance . 32

3.2.1 Equivalence of Literal Performances . 36

3.3 Players . 42

3.4 Conversion functions with default settings . 45

3.4.1 Examples of Player Construction . 45

3.5 Conversion functions with default settings . 47

4 Interfaces to other musical software 51

4.1 Connect Performance to a Back-End . 51

4.2 Midi . 53

4.2.1 The Gory Details . 57

4.2.2 Instrument map . 59

4.2.3 Reading Midi files . 62

2

4.3 CSound . 68

4.3.1 The Score File . 69

4.3.2 The Orchestra File . 79

4.3.3 Tutorial . 103

4.4 MML . 127

5 Processing and Analysis 128

5.1 Optimization . 128

5.2 Structure Analysis . 132

5.3 Markov Chains . 134

5.4 Pretty printing Music . 134

6 Related and Future Research 137

A Helper modules 139

A.1 Convenient Functions for Getting Started With Haskore and MIDI 139

A.1.1 Test routines . 139

A.1.2 Some General Midi test functions . 141

A.2 Utility functions . 141

B Examples 144

B.1 Haskore in Action . 144

B.2 Children’s Song No. 6 . 149

B.3 Self-Similar (Fractal) Music.T . 150

B.4 Guitar . 152

C Design discussion 155

3

1 Introduction

Haskore is a collection of Haskell modules designed for expressing musical structures in the high-level,
declarative style of functional programming. In Haskore, musical objects consist of primitive notions such as
notes and rests, operations to transform musical objects such as transpose and tempo-scaling, and operations
to combine musical objects to form more complex ones, such as concurrent and sequential composition.
From these simple roots, much richer musical ideas can easily be developed.

Haskore is a means for describing music—in particular Western Music—rather than sound. It is not a
vehicle for synthesizing sound produced by musical instruments, for example, although it does capture the
way certain (real or imagined) instruments permit control of dynamics and articulation.

Haskore also defines a notion of literal performance through which observationally equivalent musical
objects can be determined. From this basis many useful properties can be proved, such as commutative,
associative, and distributive properties of various operators. An algebra of music thus surfaces.

In fact a key aspect of Haskore is that objects represent both abstract musical ideas and their concrete
implementations. This means that when we prove some property about an object, that property is true about
the music in the abstract and about its implementation. Similarly, transformations that preserve musical
meaning also preserve the behavior of their implementations. For this reason Haskell is often called an ex-
ecutable specification language; i.e. programs serve the role of mathematical specifications that are directly
executable.

Building on the results of the functional programming community’s Haskell effort has several important
advantages: First, and most obvious, we can avoid the difficulties involved in new programming language
design, and at the same time take advantage of the many years of effort that went into the design of Haskell.
Second, the resulting system is both extensible (the user is free to add new features in substantive, creative
ways) and modifiable (if the user doesn’t like our approach to a particular musical idea, she is free to change
it).

In the remainder of this paper I assume that the reader is familar with the basics of functional program-
ming and Haskell in particular. If not, I encourage reading at least A Gentle Introduction to Haskell [HF92]
before proceeding. I also assume some familiarity with equational reasoning; an excellent introductory text
on this is [BW88].

1.1 Acknowledgements

Many students have contributed to Haskore over the years, doing for credit what I didn’t have the spare
time to do! I am indebted to them all: Amar Chaudhary, Syam Gadde, Bo Whong, and John Garvin, in
particular. Thanks also to Alastair Reid for implementing the first Midi-file writer, to Stefan Ratschan for
porting Haskore to GHC, and to Matt Zamec for help with the Csound compatibility module. I would also
like to express sincere thanks to my friend and talented New Haven composer, Tom Makucevich, for being
Haskore’s most faithful user.

4

Haskore

Haskore→MIDI
Translator

Haskore→ CSound
Translator

Haskore→MusicKit
Translator

Haskore→ Notation
Translator

Standard MIDI File CSound Score File MusicKit ScoreFile CMN Code

MIDI File Player CSound MusicKit CMN

MIDI .snd File Notated score

MIDI Instruments Sound File Player

Figure 1: Overall System Diagram

2 The Architecture of Haskore

Figure 1 shows the overall structure of Haskore. Note the independence of high level structures from the
“music platform” on which Haskore runs. Originally, the goal was for Haskore compositions to run equally
well as conventional midi-files [IMA90], NeXT MusicKit score files [JB91] 1, and CSound score files
[Ver86] 2, and for Haskore compositions to be displayed and printed in traditional notation using the CMN
(Common Music Notation) subsystem. 3 In reality, three platforms are currently supported: MIDI, CSound,
and some signal processing routines written in Haskell. For musical notation an interface to Lilypond is
currently in progress.

In any case, the independence of abstract musical ideas from the concrete rendering platform is ac-
complished by having abstract notions of musical object, player, instrument, and performance. All of this
resides in the box labeled “Haskore” in the diagram above.

At the module level, Haskore is organized as follows:

module Haskore (
module Haskore.Music,
module Haskore.Performance,
module Haskore.Performance.Player,
module Haskore.Interface.MIDI.Write,
module Haskore.Interface.MIDI.Read,
module Haskore.Interface.MIDI.Render,

1The NeXT music platform is obsolete.
2There also exists a translation to CSound for an earlier version of Haskore.
3We have abandoned CMN entirely, as there are now better candidates for notation packages into which Haskore could be

mapped.

5

module Sound.MIDI.File.Save,
module Sound.MIDI.File.Load,
) where

import qualified Haskore.Music
import qualified Haskore.Performance
import qualified Haskore.Performance.Player
import qualified Haskore.Interface.MIDI.Write
import qualified Haskore.Interface.MIDI.Read
import qualified Haskore.Interface.MIDI.Render
import qualified Sound.MIDI.File.Save
import qualified Sound.MIDI.File.Load

This document was written in the literate programming style, and thus the LATEX manuscript file from
which it was generated is an executable Haskell program. It can be compiled under LATEX in two ways:
a basic mode provides all of the functionality that most users will need, and an extended mode in which
various pieces of lower-level code are provided and documented as well (see file header for details). This
version was compiled in extended mode. The document can be retrieved via WWW from: http://
haskell.org/haskore/ (consult the README file for details). It is also delivered with the standard
joint Nottingham/Yale Hugs release.

The Haskore code conforms to Haskell 1.4, and has been tested under the June, 1998 release of Hugs
1.4. Unfortunately Hugs does not yet support mutually recursive modules, so all references to the module
Player in this document are commented out, which in effect makes it part of module Performance
(with which it is mutually recursive).

A final word before beginning: As various musical ideas are presented in this Haskore tutorial, I urge
the reader to question the design decisions that are made. There is no supreme theory of music that dictates
my decisions, and what I present is actually one of several versions that I have developed over the years (this
version is much richer than the one described in [HMGW96]; it is the “Haskore in practice” version alluded
to in Section 4.2 of that paper). I believe that this version is suitable for many practical purposes, but the
reader may wish to modify it to better satisfy her intuitions and/or application.

3 Creation of Music

3.1 Composing Music

3.1.1 Pitch

Perhaps the most basic musical idea is that of a pitch, which consists of an octave and a pitch class (i.e. one
of 12 semi-tones, cf. Section C):

module Haskore.Basic.Pitch where

import Data.Ix(Ix)

type T = (Octave, Class)
data Class = Cf | C | Cs | Df | D | Ds | Ef | E | Es | Ff | F | Fs

| Gf | G | Gs | Af | A | As | Bf | B | Bs

6

http://haskell.org/haskore/
http://haskell.org/haskore/

A2 (-3,A) 27.5 Hz
A1 (-2,A) 55.0 Hz
A (-1,A) 110.0 Hz
a (0,A) 220.0 Hz
a1 (1,A) 440.0 Hz
a2 (2,A) 880.0 Hz

Figure 2: Note names, Haskore representations and frequencies.

deriving (Eq,Ord,Ix,Enum,Show,Read)
type Octave = Int

So a Pitch.T is a pair consisting of a pitch class and an octave. Octaves are just integers, but we de-
fine a datatype for pitch classes, since distinguishing enharmonics (such as G# and Ab) may be important
(especially for notation). Figure 2 shows the meaning of the some Pitch.T values.

Treating pitches simply as integers is useful in many settings, so let’s also define some functions for
converting between Pitch.T values and Pitch.Absolute values (integers):

type Absolute = Int
type Relative = Int

toInt :: T -> Absolute
toInt (oct,pc) = 12*oct + classToInt pc

fromInt :: Absolute -> T
fromInt ap =

let (oct, n) = divMod ap 12
in (oct, [C,Cs,D,Ds,E,F,Fs,G,Gs,A,As,B] !! n)

classToInt :: Class -> Relative
classToInt pc = case pc of

Cf -> -1; C -> 0; Cs -> 1 -- or should Cf be 11?
Df -> 1; D -> 2; Ds -> 3
Ef -> 3; E -> 4; Es -> 5
Ff -> 4; F -> 5; Fs -> 6
Gf -> 6; G -> 7; Gs -> 8
Af -> 8; A -> 9; As -> 10
Bf -> 10; B -> 11; Bs -> 12 -- or should Bs be 0?

Now two functions for parsing and formatting pitch classes in a more human way, that is using ’#’ and
’b’ suffixes instead of ’s’ and ’f’. We do not simply use

classParse :: ReadS Class
classParse (p:’#’:r) = reads (p:’s’:r)
classParse (p:’b’:r) = reads (p:’f’:r)
classParse r = reads r

classFormat :: Class -> ShowS
classFormat pc =

let (p:r) = show pc

7

in (p:) .
case r of

[] -> id
’s’:[] -> (’#’:)
’f’:[] -> (’b’:)
_ -> error ("classFormat: Pitch.Class.show must not return suffixes" ++

" other than ’s’ and ’f’")

Using Pitch.Absolute we can compute the frequency associated with a pitch:

intToFreq :: Floating a => Absolute -> a
intToFreq ap = 440 * 2 ** (fromIntegral (ap - toInt (1,A)) / 12)

We can also define a function Pitch.transpose, which transposes pitches (analogous to
Music.transpose, which transposes values of type Music.T):

transpose :: Relative -> T -> T
transpose i p = fromInt (toInt p + i)

1 Exercise. Show that toInt . fromInt = id, and, up to enharmonic equivalences,
fromInt . toInt = id.

2 Exercise. Show that transpose i (transpose j p) = transpose (i+j) p.

3.1.2 Music

module Haskore.Music where

import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Basic.Duration as Duration

import qualified Medium.Temporal as Temporal
import qualified Medium.Controlled as CtrlMedium
import qualified Medium.Controlled.List as CtrlMediumList
import qualified Medium
import Medium (prim, serial, parallel)

import Haskore.General.Utility (maximum0,)
import Data.Tuple.HT (mapPair, mapSnd,)
import Data.Maybe.HT (toMaybe,)
import Data.Maybe (isJust,)
import qualified Data.List as List

Melodies consist essentially of the musical atoms notes and rests.

type Dur = Duration.T

type Atom note = Maybe note

If the atom is Nothing then it means a rest, if it is Just it contains a note. A note is described by its
pitch and a list of NoteAttributes (defined later). Both notes and rests have a duration of type Dur,
which is a rational Section C. The duration is measured in ratios of whole notes.

Notes and rests along with the duration are put into the Primitive type.

8

data Primitive note =
Atom Dur (Atom note) -- a note or a rest

deriving (Show, Eq, Ord)

A primitive can not only be an atom but also a controller as defined below. We had to make controllers
alternatives of Atoms because the Medium type doesn’t support them and it would damage the beauty of
Medium if we add it at the same level as parallel and serial compositions.

data Control =
Tempo DurRatio -- scale the tempo

| Transpose Pitch.Relative -- transposition
| Player PlayerName -- player label
| Phrase PhraseAttribute -- phrase attribute

deriving (Show, Eq, Ord)

type DurRatio = Dur
type PlayerName = String

atom :: Dur -> Atom note -> T note
atom d’ = prim . Atom d’
control :: Control -> T note -> T note
control ctrl = CtrlMedium.control ctrl

mkControl :: (a -> Control) -> (a -> T note -> T note)
mkControl ctrl = control . ctrl
changeTempo :: DurRatio -> T note -> T note
changeTempo = mkControl Tempo
transpose :: Pitch.Relative -> T note -> T note
transpose = mkControl Transpose
setPlayer :: PlayerName -> T note -> T note
setPlayer = mkControl Player
phrase :: PhraseAttribute -> T note -> T note
phrase = mkControl Phrase

• changeTempo a m scales the rate at which m is played (i.e. its tempo) by a factor of a.

• transpose i m transposes m by interval i (in semitones).

• setPlayer pname m declares that m is to be performed by player pname.

• phrase pa m declares that m is to be played using the phrase attribute (described later) pa. (cf.
Section C)

From these primitives we can build more complex musical objects. They are captured by the Music.T
datatype: 4

type T note = CtrlMediumList.T Control (Primitive note)

infixr 7 +:+ {- like multiplication -}
infixr 6 =:= {- like addition -}

4I prefer to call these “musical objects” rather than “musical values” because the latter may be confused with musical aesthetics.

9

-- make them visible for importers of Music
(+:+), (=:=) :: T note -> T note -> T note
(+:+) = (Medium.+:+)
(=:=) = (Medium.=:=)

• Musical objects can be composed sequentially by Medium.serial or by (+:+). That is both
serial [m0, m1] and m0 +:+ m1 denote that m0 and m1 are played in sequence. (cf. Sec-
tion C)

• Similarly Medium.parallel and (=:=) compose parallely. E.g. both parallel [m0, m1]
and m0 =:= m1 mean that m0 and m1 are played simultaneously.

It is convenient to represent these ideas in Haskell as a recursive datatype rather then simple function
calls because we wish to not only construct musical objects, but also take them apart, analyze their structure,
print them in a structure-preserving way, interpret them for performance purposes, etc. Nonetheless using
functions that are mapped to constructors has the advantage that song descriptions can stay independent
from a particular music data structure.

3.1.3 Duration

module Haskore.Basic.Duration where

import qualified Medium.Temporal as TemporalMedium
import Data.Ratio((%))

import qualified Haskore.General.Utility as Utility
import Haskore.General.Map (Map)
import qualified Haskore.General.Map as Map

import qualified Numeric.NonNegative.Wrapper as NonNeg

type T = TemporalMedium.Dur
type Ratio = T
type Offset = Rational

infixl 7 %+
(%+) :: Integer -> Integer -> T
(%+) x y = fromRatio (x%y)

fromRatio :: Rational -> T
fromRatio = NonNeg.fromNumberMsg "Duration.fromRatio"

toRatio :: T -> Rational
toRatio = NonNeg.toNumber

toNumber :: Fractional a => T -> a
toNumber = fromRational . NonNeg.toNumber

scale :: Ratio -> T -> T

10

scale = (*)

add :: Offset -> T -> T
add d = NonNeg.fromNumberMsg "Duration.add" . (d+) . toRatio

add may have undefined result.

divide :: T -> T -> Integer
divide r1 r2 = Utility.divide (toRatio r1) (toRatio r2)

divisible :: T -> T -> Bool
divisible r1 r2 = Utility.divisible (toRatio r1) (toRatio r2)

gcd :: T -> T -> T
gcd r1 r2 = fromRatio (Utility.gcdDur (toRatio r1) (toRatio r2))

dotted, doubleDotted :: T -> T
dotted = ((3%+2) *)
doubleDotted = ((7%+4) *)

bn, wn, hn, qn, en, sn, tn, sfn :: T
dwn, dhn, dqn, den, dsn, dtn :: T
ddhn, ddqn, dden :: T

bn = 2 -- brevis
wn = 1 -- whole note
hn = 1%+ 2 -- half note
qn = 1%+ 4 -- quarter note
en = 1%+ 8 -- eight note
sn = 1%+16 -- sixteenth note
tn = 1%+32 -- thirty-second note
sfn = 1%+64 -- sixty-fourth note

dwn = dotted wn -- dotted whole note
dhn = dotted hn -- dotted half note
dqn = dotted qn -- dotted quarter note
den = dotted en -- dotted eighth note
dsn = dotted sn -- dotted sixteenth note
dtn = dotted tn -- dotted thirty-second note

ddhn = doubleDotted hn -- double-dotted half note
ddqn = doubleDotted qn -- double-dotted quarter note
dden = doubleDotted en -- double-dotted eighth note

nameDictionary :: Map T String
nameDictionary =

let names = "b" : "w" : "h" : "q" : "e" : "s" : "t" : "sf" : []
durs = zip (iterate (/2) 2) names
ddurs = map (\(d,s) -> (dotted d, "d" ++s)) durs
dddurs = map (\(d,s) -> (doubleDotted d, "dd"++s)) durs

in Map.fromList $
durs ++
take 6 (drop 1 ddurs) ++
take 3 (drop 2 dddurs)

11

{- |
Converts @1%4@ to @\"qn\"@ and so on.
-}
toString :: T -> String
toString dur =

maybe
("(" ++ show dur ++ ")")
(++"n")
(Map.lookup nameDictionary dur)

Check proper formatting.

propToString :: Bool
propToString =

all (\(dur,name) -> toString dur == name) $
(bn, "bn") : (wn, "wn") : (hn, "hn") : (qn, "qn") :
(en, "en") : (sn, "sn") : (tn, "tn") : (sfn, "sfn") :
(dwn, "dwn") : (dhn, "dhn") : (dqn, "dqn") :
(den, "den") : (dsn, "dsn") : (dtn, "dtn") :
(ddhn, "ddhn") : (ddqn, "ddqn") : (dden, "dden") : []

3.1.4 Rests

3.1.5 Some Simple Examples

With this modest beginning, we can already express quite a few musical relationships simply and effectively.

Lines and Chords. Two common ideas in music are the construction of notes in a horizontal fashion (a
line or melody), and in a vertical fashion (a chord):

line, chord :: [T note] -> T note
line = serial
chord = parallel

Delay and Repeat. Suppose now that we wish to describe a melody m accompanied by an identical voice
a perfect 5th higher. In Haskore we simply write “m =:= transpose 7 m”. Similarly, a canon-like
structure involving m can be expressed as “m =:= delay d m”, where:

delay :: Dur -> T note -> T note
delay d’ m = if d’ == 0 then m else rest d’ +:+ m

Of course, Haskell’s non-strict semantics also allows us to define infinite musical objects. For example,
a musical object may be repeated ad nauseum using this simple function:

repeat :: T note -> T note
repeat m = line (List.repeat m)

12

rest :: Dur -> T note
rest d’ = prim (Atom d’ Nothing)

bnr, wnr, hnr, qnr, enr, snr, tnr, sfnr :: T note
dwnr, dhnr, dqnr, denr, dsnr, dtnr :: T note
ddhnr, ddqnr, ddenr :: T note

bnr = rest Duration.bn -- brevis rest
wnr = rest Duration.wn -- whole note rest
hnr = rest Duration.hn -- half note rest
qnr = rest Duration.qn -- quarter note rest
enr = rest Duration.en -- eight note rest
snr = rest Duration.sn -- sixteenth note rest
tnr = rest Duration.tn -- thirty-second note rest
sfnr = rest Duration.sfn -- sixty-fourth note rest

dwnr = rest Duration.dwn -- dotted whole note rest
dhnr = rest Duration.dhn -- dotted half note rest
dqnr = rest Duration.dqn -- dotted quarter note rest
denr = rest Duration.den -- dotted eighth note rest
dsnr = rest Duration.dsn -- dotted sixteenth note rest
dtnr = rest Duration.dtn -- dotted thirty-second note rest

ddhnr = rest Duration.ddhn -- double-dotted half note rest
ddqnr = rest Duration.ddqn -- double-dotted quarter note rest
ddenr = rest Duration.dden -- double-dotted eighth note rest

Figure 3: Convenient rest definitions.

13

Thus an infinite ostinato can be expressed in this way, and then used in different contexts that extract only
the portion that’s actually needed.

A limitted loop can be defined the same way.

replicate :: Int -> T note -> T note
replicate n m = line (List.replicate n m)

Determining Duration It is sometimes desirable to compute the duration in beats of a musical object; we
can do so as follows:

dur :: T note -> Dur
dur = Temporal.dur

instance Temporal.C (Primitive note) where
dur (Atom d’ _) = d’
none d’ = Atom d’ Nothing

instance Temporal.Control Control where
controlDur (Tempo t) d’ = d’ / t
controlDur _ d’ = d’
anticontrolDur (Tempo t) d’ = d’ * t
anticontrolDur _ d’ = d’

However, this measurement ignores the temporal effects of phrases like ritardando.

Super-retrograde. Using dur we can define a function reverse that reverses any Music.T value
(and is thus considerably more useful than retro defined earlier). Note the tricky treatment of parallel
compositions. Also note that this version wastes time. It computes the duration of smaller structures in the
case of parallel compositions. When it descends into a structure of which it has computed the duration it
computes the duration of its sub-structures again. This can lead to a quadratic time consumption.

reverse :: T note -> T note
reverse = mapList

(,)
(flip const)
List.reverse
(\ms -> let durs = map dur ms

dmax = maximum0 durs
in zipWith (delay . (dmax -)) durs ms)

Truncating Parallel Composition Note that the duration of m0 =:= m1 is the maximum of the dura-
tions of
codem0 and m1 (and thus if one is infinite, so is the result). Sometimes we would rather have the result be
of duration equal to the shorter of the two. This is not as easy as it sounds, since it may require interrupting
the longer one in the middle of a note (or notes).

We will define a “truncating parallel composition” operator (/=:), but first we will define an auxiliary
function Music.take such that Music.take d m is the musical object m “cut short” to have at most
duration d. The name matches the one of the module List because the function is quite similar.

14

take :: Dur -> T note -> T note
take newDur m =

if newDur < 0
then error ("Music.take: newDur " ++ show newDur ++ " must be non-negative")
else snd (take’ newDur m)

takeLine :: Dur -> [T note] -> [T note]
takeLine newDur = snd . takeLine’ newDur

take’ :: Dur -> T note -> (Dur, T note)
take’ 0 = const (0, rest 0)
take’ newDur =

switchList
(\oldDur at -> let takenDur = min oldDur newDur

in (takenDur, atom takenDur at))
(\ctrl -> case ctrl of

Tempo t -> mapPair ((/t), changeTempo t) .
take’ (newDur * t)

_ -> mapSnd (control ctrl) .
take’ newDur)

(mapSnd line . takeLine’ newDur)
(mapPair (maximum0,chord) . unzip . map (take’ newDur))

takeLine’ :: Dur -> [T note] -> (Dur, [T note])
takeLine’ 0 _ = (0, [])
takeLine’ _ [] = (0, [])
takeLine’ newDur (m:ms) =

let m’ = take’ newDur m
ms’ = takeLine’ (newDur - fst m’) ms

in (fst m’ + fst ms’, snd m’ : snd ms’)

Note that Music.take is ready to handle a Music.T object of infinite length. The implementation
of takeLine’ and take’ would be simpler if one does not compute the duration of the taken part of
the music in take’. Instead one could compute the duration of the taken part where it is needed, i.e.
after takeLine’ calls Music.take’. The drawback of this simplification would be analogously to
Music.reverse: The duration of sub-structures must be computed again and again, which results in
quadratic runtime in the worst-case.

With Music.take, the definition of (/=:) is now straightforward:

(/=:) :: T note -> T note -> T note
m0 /=: m1 = Haskore.Music.take (min (dur m0) (dur m1)) (m0 =:= m1)

Unfortunately, whereas Music.take can handle infinite-duration music values, (/=:) cannot.

3 Exercise. Define a version of (/=:) that shortens correctly when either or both of its arguments are
infinite in duration.

For completeness we want to define a function somehow dual to Music.take. The Music.drop
removes a prefix of the given duration from the music. Notes that begin in the removed part are lost. This is
especially important for notes which start in the removed part and end in the remainder. They are replaced
by rests.

15

We would like to design drop’ such that it returns the duration of the remaining music. This design
fails for infinite music. Thus we return the duration of the part that was dropped. When going through
a serial composition, if we could drop less from a music item than we wanted then the music item must
have been gone completely and must drop subsequent items. If we dropped as much as we wanted we are
ready. If we dropped more than we wanted this indicates an error. Remaining rests of zero duration, empty
compositions and so on may be removed by subsequent optimizations.

drop :: Dur -> T note -> T note
drop remDur =

if remDur < 0
then error ("Music.drop: remDur " ++ show remDur ++ " must be non-negative")
else snd . drop’ remDur

dropLine :: Dur -> [T note] -> [T note]
dropLine remDur = snd . dropLine’ remDur

drop’ :: Dur -> T note -> (Dur, T note)
drop’ 0 = (,) 0
drop’ remDur =

switchList
(\oldDur _ -> let newDur = min oldDur remDur

in (newDur, rest (oldDur-newDur)))
(\ctrl -> case ctrl of

Tempo t -> mapPair ((/t), changeTempo t) .
drop’ (remDur * t)

_ -> mapSnd (control ctrl) .
drop’ remDur)

(mapSnd line . dropLine’ remDur)
(mapPair (maximum0,chord) . unzip . map (drop’ remDur))

dropLine’ :: Dur -> [T note] -> (Dur, [T note])
dropLine’ 0 m = (0, m)
dropLine’ _ [] = (0, [])
dropLine’ remDur (m:ms) =

let (dropped, m’) = drop’ remDur m
in case compare dropped remDur of

LT -> mapPair ((dropped+), id) (dropLine’ (remDur - dropped) ms)
EQ -> (dropped, m’ : ms)
GT -> error "dropLine’: program error: dropped more than we wanted"

Note that mapPair is prepared for infinite lists.

We will now define functions for filtering out notes. This way you can e.g. extract all notes for a
particular instrument. Non-matching notes are replaced by rests. You may want to merge them using
Optimization.rest.

filter :: (note -> Bool) -> T note -> T note
filter p =

fmap (\(Atom d’ mn) -> Atom d’ (mn >>= \n -> toMaybe (p n) n))
-- fmap (\(Atom d’ mn) -> Atom d’ (listToMaybe $ filter p $ maybeToList mn))

partition :: (note -> Bool) -> T note -> (T note, T note)
partition p =

foldList

16

(\ d’ mn ->
mapPair

(atom d’, atom d’)
(if maybe False p mn

then (mn, Nothing)
else (Nothing, mn)))

(\k -> mapPair (control k, control k))
(mapPair (line, line) . unzip)
(mapPair (chord, chord) . unzip)

partitionMaybe :: (noteA -> Maybe noteB) -> T noteA -> (T noteB, T noteA)
partitionMaybe f =

foldList
(\ d’ mn ->

mapPair
(atom d’, atom d’)
(let m = mn >>= f
in if isJust m

then (m, Nothing)
else (Nothing, mn)))

(\k -> mapPair (control k, control k))
(mapPair (line, line) . unzip)
(mapPair (chord, chord) . unzip)

Inspecting a Music.T Here are some routines which specialize functions from module Medium to mod-
ule Music.

applyPrimitive ::
(Dur -> Atom note -> b) ->
Primitive note -> b

applyPrimitive fa (Atom d’ at) = fa d’ at

switchBinary ::
(Dur -> Atom note -> b) ->
(Control -> T note -> b) ->
(T note -> T note -> b) ->
(T note -> T note -> b) ->
b -> T note -> b

switchBinary fa fc fser fpar =
CtrlMedium.switchBinary (applyPrimitive fa) fser fpar fc

switchList ::
(Dur -> Atom note -> b) ->
(Control -> T note -> b) ->
([T note] -> b) ->
([T note] -> b) ->
T note -> b

switchList fa fc fser fpar =
CtrlMedium.switchList (applyPrimitive fa) fser fpar fc

foldBin ::
(Dur -> Atom note -> b) ->
(Control -> b -> b) ->
(b -> b -> b) ->

17

(b -> b -> b) ->
b -> T note -> b

foldBin fa fc fser fpar none’ =
CtrlMedium.foldBin (applyPrimitive fa) fser fpar fc none’

foldList ::
(Dur -> Atom note -> b) ->
(Control -> b -> b) ->
([b] -> b) ->
([b] -> b) ->
T note -> b

foldList fa fc fser fpar =
CtrlMedium.foldList (applyPrimitive fa) fser fpar fc

mapListFlat ::
(Dur -> Atom noteA -> (Dur, Atom noteB)) ->
(Control -> T noteA -> T noteB) ->
([T noteA] -> [T noteB]) ->
([T noteA] -> [T noteB]) ->
T noteA -> T noteB

mapListFlat fa fc fser fpar =
CtrlMediumList.mapListFlat (uncurry Atom . applyPrimitive fa) fser fpar fc

mapList ::
(Dur -> Atom noteA -> (Dur, Atom noteB)) ->
(Control -> T noteB -> T noteB) ->
([T noteB] -> [T noteB]) ->
([T noteB] -> [T noteB]) ->
T noteA -> T noteB

mapList fa fc fser fpar =
CtrlMediumList.mapList (uncurry Atom . applyPrimitive fa) fser fpar fc

-- Could be an instance of fmap if Music.T would be an algebraic type.
mapNote :: (noteA -> noteB) -> T noteA -> T noteB
mapNote f’ = fmap (\(Atom d’ at) -> Atom d’ (fmap f’ at))

{-
This is useful for duration dependend attributes,
and duration dependend instrument sounds.
However it seems to be more appropriate to pass the duration in seconds
to the sound generators rather than the relative duration.
-}
mapDurNote :: (Dur -> noteA -> noteB) -> T noteA -> T noteB
mapDurNote f’ = fmap (\(Atom d’ at) -> Atom d’ (fmap (f’ d’) at))

3.1.6 Trills

module Haskore.Composition.Trill where

import qualified Haskore.Music as Music

18

A trill is an ornament that alternates rapidly between two (usually adjacent) pitches. Let’s implement a
trill as a function that take a note as an argument and returns a series of notes whose durations add up to the
same duration as as the given note.

A trill alternates between the given note and another note, usually the note above it in the scale. There-
fore, it must know what other note to use. So that the structure of trill remains parallel across different
keys, we’ll implement the other note in terms of its interval from the given note in half steps. Usually, the
note is either a half-step above (interval = 1) or a whole-step above (interval = 2). Using negative numbers,
a trill that goes to lower notes can even be implemented.

Also, the trill needs to know how fast to alternate between the two notes. One way is simply to specify
the type of smaller note to use. (Another implementation will be discussed later.) So, our trill has the
following type:

trill :: Int -> Music.Dur -> Music.T note -> Music.T note

Its implementation:

trill i d m =
let atom = Music.take d m
in Music.line (Music.takeLine (Music.dur m)

(cycle [atom, Music.transpose i atom]))

Since the function uses Music.tranpose one can even trill more complex objects like chords.

The next version of trill starts on the second note, rather than the given note. It is simple to define a
function that starts on the other note:

trill’ :: Int -> Music.Dur -> Music.T note -> Music.T note
trill’ i sDur m =

trill (negate i) sDur (Music.transpose i m)

Another way to define a trill is in terms of the number of subdivided notes to be included in the trill.

trillN :: Int -> Integer -> Music.T note -> Music.T note
trillN i nTimes m =

trill i (Music.dur m / fromIntegral nTimes) m

This, too, can be made to start on the other note.

trillN’ :: Int -> Integer -> Music.T note -> Music.T note
trillN’ i nTimes m =

trillN (negate i) nTimes (Music.transpose i m)

Finally, a roll can be implemented as a trill whose interval is zero. This feature is particularly useful
for percussion.

roll :: Music.Dur -> Music.T note -> Music.T note
rollN :: Integer -> Music.T note -> Music.T note

roll d = trill 0 d
rollN nTimes = trillN 0 nTimes

19

3.1.7 Percussion

Percussion is a difficult notion to represent in the abstract, since in a way, a percussion instrument is just
another instrument, so why should it be treated differently? On the other hand, even common practice
notation treats it specially, even though it has much in common with non-percussive notation. The midi
standard is equally ambiguous about the treatment of percussion: on one hand, percussion sounds are chosen
by specifying an octave and pitch, just like any other instrument, on the other hand these notes have no tonal
meaning whatsoever: they are just a convenient way to select from a large number of percussion sounds.
Indeed, part of the General Midi Standard is a set of names for commonly used percussion sounds.

module Haskore.Composition.Drum
(T, GM.Drum(..), Element(..), na,
toMusic, toMusicDefaultAttr,
lineToMusic, elementToMusic, funkGroove) where

import Haskore.Composition.Trill
import qualified Haskore.Basic.Duration as Duration
import Haskore.Basic.Duration (qn, en,)
import Haskore.Music (qnr, enr, (=:=), changeTempo, rest,)
import Haskore.Melody.Standard (NoteAttributes, na,)

import qualified Haskore.Music as Music
import qualified Haskore.Music.GeneralMIDI as MidiMusic
import qualified Haskore.Music.Rhythmic as RhyMusic
import qualified Sound.MIDI.General as GM

type T = GM.Drum

Since Midi is such a popular platform, we can at least define some handy functions for using the General
Midi Standard. We start by defining the datatype shown in Figure ??, which borrows its constructor names
from the General Midi standard. The comments reflecting the “Midi Key” numbers will be explained later,
but basically a Midi Key is the equivalent of an absolute pitch in Haskore terminology. We will not adapt the
MIDI treatment of drums in Haskore since it makes no sense, e.g. to transpose drums by increasing the key
number. Thus we defined a special constructor for drums in RhyMusic.T. We will now give a function
which constructs a RhyMusic.T for a given value specifying a drum:

toMusic :: drum -> Duration.T -> NoteAttributes -> RhyMusic.T drum instr
toMusic drm dr nas =

Music.atom dr (Just (RhyMusic.noteFromAttrs nas (RhyMusic.Drum drm)))

toMusicDefaultAttr ::
drum -> Duration.T -> RhyMusic.T drum instr

toMusicDefaultAttr drm dr = toMusic drm dr na

For example, here are eight bars of a simple rock or “funk groove” that uses Drum.toMusic and
Drum.roll:

funkGroove :: MidiMusic.T
funkGroove =

let p1 = toMusic GM.LowTom qn na
p2 = toMusic GM.AcousticSnare en na

in changeTempo 3 (Music.take 8 (Music.repeat

20

((Music.line [p1, qnr, p2, qnr, p2,
p1, p1, qnr, p2, enr])

=:= roll en (toMusic GM.ClosedHiHat 2 na))
))

We can go one step further by defining our own little “percussion datatype”:

data Element =
R Duration.T -- rest

| N Duration.T NoteAttributes -- note
| Roll Duration.T Duration.T NoteAttributes -- roll w/duration
| Rolln Integer Duration.T NoteAttributes -- roll w/number of strokes

lineToMusic :: T -> [Element] -> MidiMusic.T
lineToMusic dsnd =

Music.line . map (elementToMusic dsnd)

elementToMusic :: T -> Element -> MidiMusic.T
elementToMusic dsnd el =

let drum = toMusic dsnd
in case el of

R dur -> rest dur
N dur nas -> drum dur nas
Roll sDur dur nas -> roll sDur (drum dur nas)
Rolln nTimes dur nas -> rollN nTimes (drum dur nas)

3.1.8 Phrasing and Articulation

The Phrase constructor permits one to annotate an entire musical object with a PhraseAttribute.
This attribute datatype covers a wide range of attributions found in common practice notation, and is shown
in Figure 4. Beware that use of them requires the use of a player that knows how to interpret them! Players
will be described in more detail in Section 3.3.

Again, to stay independent from the underlying data structure we define some functions that simplify
the application of several phrases.

dynamic :: Dynamic -> T note -> T note
dynamic = phrase . Dyn

tempo :: Tempo -> T note -> T note
tempo = phrase . Tmp

articulation :: Articulation -> T note -> T note
articulation = phrase . Art

ornament :: Ornament -> T note -> T note
ornament = phrase . Orn

accent, crescendo, diminuendo, loudness1,
ritardando, accelerando ::

Rational -> T note -> T note

21

data PhraseAttribute = Dyn Dynamic
| Tmp Tempo
| Art Articulation
| Orn Ornament

deriving (Eq, Ord, Show)

data Dynamic = Loudness Rational | Accent Rational
| Crescendo Rational | Diminuendo Rational

deriving (Eq, Ord, Show)

data Tempo = Ritardando Rational | Accelerando Rational
deriving (Eq, Ord, Show)

data Articulation = Staccato Dur | Legato Dur | Slurred Dur
| Tenuto | Marcato | Pedal | Fermata | FermataDown | Breath
| DownBow | UpBow | Harmonic | Pizzicato | LeftPizz
| BartokPizz | Swell | Wedge | Thumb | Stopped

deriving (Eq, Ord, Show)

data Ornament = Trill | Mordent | InvMordent | DoubleMordent
| Turn | TrilledTurn | ShortTrill
| Arpeggio | ArpeggioUp | ArpeggioDown
| Instruction String | Head NoteHead

deriving (Eq, Ord, Show)

-- this is more a note attribute than a phrase attribute
data NoteHead = DiamondHead | SquareHead | XHead | TriangleHead

| TremoloHead | SlashHead | ArtHarmonic | NoHead
deriving (Eq, Ord, Show)

Figure 4: Note and Phrase Attributes.

22

accent = dynamic . Accent
crescendo = dynamic . Crescendo
diminuendo = dynamic . Diminuendo
loudness1 = dynamic . Loudness

ritardando = tempo . Ritardando
accelerando = tempo . Accelerando

staccato, legato :: Dur -> T note -> T note

staccato = articulation . Staccato
legato = articulation . Legato

Note that some of the attributes are parameterized with a numeric value. This is used by a player to
control the degree to which an articulation is to be applied. For example the articulations Staccato,
Legato, Slurred describe the overlapping between notes. We would expect Legato 1.2 to create
more of a legato feel than Legato 1.1, and Staccato 2 to be stronger than Staccato 1.

The following constants represent default values for some of the parameterized attributes:

defltLegato, defltStaccato,
defltAccent, bigAccent :: T note -> T note

defltLegato = legato Duration.sn
defltStaccato = staccato Duration.sn
defltAccent = accent 1.2
bigAccent = accent 1.5

To understand exactly how a player interprets an attribute requires knowing how players are defined.
Haskore defines only a few simple players, so in fact many of the attributes in Figure 4 are to allow the user
to give appropriate interpretations of them by her particular player. But before looking at the structure of
players we will need to look at the notion of a performance (these two ideas are tightly linked, which is why
the Player and Performance modules are mutually recursive).

4 Exercise. Find a simple piece of music written by your favorite composer, and transcribe it into Haskore.
In doing so, look for repeating patterns, transposed phrases, etc. and reflect this in your code, thus revealing
deeper structural aspects of the music than that found in common practice notation.

Section B.2 shows the first 28 bars of Chick Corea’s “Children’s Song No. 6” encoded in Haskore.

3.1.9 Intervals

In music theory, an interval is the difference (a ratio or logarithmic measure) in pitch between two notes and
often refers to those two notes themselves (otherwise known as a dyad).

Here we list some common names for some possible intervals.

module Haskore.Basic.Interval where

unison, minorSecond, majorSecond, minorThird, majorThird,
fourth, fifth, minorSixth, majorSixth, minorSeventh, majorSeventh,

23

octave, octaveMinorSecond, octaveMajorSecond, octaveMinorThird,
octaveMajorThird, octaveFourth, octaveFifth, octaveMinorSixth,
octaveMajorSixth, octaveMinorSeventh, octaveMajorSeventh :: Integral a => a

unison = 0
minorSecond = 1
majorSecond = 2
minorThird = 3
majorThird = 4
fourth = 5
fifth = 7
minorSixth = 8
majorSixth = 9
minorSeventh = 10
majorSeventh = 11
octave = 12
octaveMinorSecond = octave + minorSecond
octaveMajorSecond = octave + majorSecond
octaveMinorThird = octave + minorThird
octaveMajorThird = octave + majorThird
octaveFourth = octave + fourth
octaveFifth = octave + fifth
octaveMinorSixth = octave + minorSixth
octaveMajorSixth = octave + majorSixth
octaveMinorSeventh = octave + minorSeventh
octaveMajorSeventh = octave + majorSeventh

3.1.10 Chords

Earlier I described how to represent chords as values of type Music.T. However, sometimes it is convenient
to treat chords more abstractly. Rather than think of a chord in terms of its actual notes, it is useful to think
of it in terms of its chord “quality”, coupled with the key it is played in and the particular voicing used.
For example, we can describe a chord as being a “major triad in root position, with root middle C”. Several
approaches have been put forth for representing this information, and we cannot cover all of them here.
Rather, I will describe two basic representations, leaving other alternatives to the skill and imagination of
the reader.5

First, one could use a pitch representation, where each note is represented as its distance from some fixed
pitch. 0 is the obvious fixed pitch to use, and thus, for example, [0,4,7] represents a major triad in root
position. The first zero is in some sense redundant, of course, but it serves to remind us that the chord is in
“normal form”. For example, when forming and transforming chords, we may end up with a representation
such as [2,6,9], which is not normalized; its normal form is in fact [0,4,7]. Thus we define:

A chord is in pitch normal form if the first pitch is zero, and the subsequent pitches are mono-
tonically increasing.

One could also represent a chord intervalically; i.e. as a sequence of intervals. A major triad in root
position, for example, would be represented as [4,3,-7], where the last interval “returns” us to the

5For example, Forte prescribes normal forms for chords in an atonal setting [For73].

24

“origin”. Like the 0 in the pitch representation, the last interval is redundant, but allows us to define another
sense of normal form:

A chord is in interval normal form if the intervals are all greater than zero, except for the last
which must be equal to the negation of the sum of the others.

In either case, we can define a chord type as:

module Haskore.Composition.Chord where

import qualified Haskore.Music as Music
import qualified Haskore.Melody as Melody
import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Basic.Interval as I
import Haskore.General.Utility (foldrf,)
import Data.Ord.HT (comparing,)
import Data.List.HT (viewR,)
import Data.List (genericLength, minimumBy,)

type T = [Pitch.Relative]

We might ask whether there is some advantage, computationally, of using one of these representations
over the other. However, there is an invertible linear transformation between them, as defined by the follow-
ing functions, and thus there is in fact little advantage of one over the other:

pitchToInterval :: T -> T
pitchToInterval [] = error "pitchToInterval: Chord must be non-empty."
pitchToInterval ch@(p:ps) =

zipWith (-) (ps++[p]) ch

intervalToPitch :: T -> T
intervalToPitch [] = error "intervalToPitch: Chord must be non-empty."
intervalToPitch ch =

let Just (chInit, chLast) = viewR (scanl (+) 0 ch)
in if chLast==0

then chInit
else error "intervalToPitch: intervals do not sum-up to zero."

5 Exercise. Show that pitchToInterval and intervalToPitch are inverses in the following sense:
for any chord ch1 in pitch normal form, and ch2 in interval normal form, each of length at least two:

intervalToPitch (pitchToInterval ch1) = ch1
pitchToInterval (intervalToPitch ch2) = ch2

Another operation we may wish to perform is a test for equality on chords, which can be done at many
levels: based only on chord quality, taking inversion into account, absolute equality, etc. Since the above
normal forms guarantee a unique representation, equality of chords with respect to chord quality and inver-
sion is simple: it is just the standard (overloaded) equality operator on lists. On the other hand, to measure
equality based on chord quality alone, we need to account for the notion of an inversion.

Using the pitch representation, the inversion of a chord can be defined as follows:

25

pitchInvert, intervalInvert :: T -> T
pitchInvert (0:p2:ps) = 0 : map (subtract p2) ps ++ [12-p2]
pitchInvert _ =

error "pitchInvert: Pitch chord representation must start with a zero."

Although we could also directly define a function to invert a chord given in interval representation, we will
simply define it in terms of functions already defined:

intervalInvert = pitchToInterval . pitchInvert . intervalToPitch

We can now determine whether a chord in normal form has the same quality (but possibly different
inversion) as another chord in normal form, as follows: simply test whether one chord is equal either to the
other chord or to one of its inversions. Since there is only a finite number of inversions, this is well defined.
In Haskell:

samePitch, sameInterval :: T -> T -> Bool
samePitch ch1 ch2 =
let invs = take (length ch1) (iterate pitchInvert ch1)
in ch2 ‘elem‘ invs

sameInterval ch1 ch2 =
let invs = take (length ch1) (iterate intervalInvert ch1)
in ch2 ‘elem‘ invs

For example, samePitch [0,4,7] [0,5,9] returns True (since [0,5,9] is the pitch normal form
for the second inversion of [0,4,7]).

Here we provide a list of some common types of chords.

majorInt, minorInt, majorSeventhInt, minorSeventhInt,
dominantSeventhInt, minorMajorSeventhInt,
sustainedFourthInt :: [Pitch.Relative]

majorInt = [I.unison, I.majorThird, I.fifth]
minorInt = [I.unison, I.minorThird, I.fifth]

majorSeventhInt = [I.unison, I.majorThird, I.fifth, I.majorSeventh]
minorSeventhInt = [I.unison, I.minorThird, I.fifth, I.minorSeventh]
dominantSeventhInt = [I.unison, I.majorThird, I.fifth, I.minorSeventh]
minorMajorSeventhInt = [I.unison, I.minorThird, I.fifth, I.majorSeventh]

sustainedFourthInt = [I.unison, I.fourth, I.fifth]

type Inversion = Int

fromIntervals ::
[Pitch.Relative] -> Inversion -> Music.T note -> [Music.T note]

fromIntervals int inv m =
let err = error ("Chord.fromInterval: inversion number "

++ show inv ++ " too large")
in map (flip Music.transpose m) (zipWith const

(drop inv (init (int ++ map (12+) int) ++ repeat err)) int)

26

major, minor, majorSeventh, minorSeventh, dominantSeventh,
minorMajorSeventh, sustainedFourth ::

Inversion -> Music.T note -> [Music.T note]

major = fromIntervals majorInt
minor = fromIntervals minorInt

majorSeventh = fromIntervals majorSeventhInt
minorSeventh = fromIntervals minorSeventhInt
dominantSeventh = fromIntervals dominantSeventhInt
minorMajorSeventh = fromIntervals minorMajorSeventhInt

sustainedFourth = fromIntervals sustainedFourthInt

We want to offer a special service: The computer shall find out inversions for chords in a sequence such
that the overall pitch does not vary so much.

A very simple approach is to compute the “center” of a chord, that is the average of all pitches. We do
now try to keep the center as close as possible to an overall trend. This is especially easy because for a chord
of n notes the change to the next inversion moves the center of the chord by 12

n tones.

The function gets the inversion of the first and the last chord and the list of chords represented by the
base note and the intervals of all notes of the chord.

data Generic attr = Generic {
genericPitchClass :: Pitch.Class,
genericIntervals :: T,
genericDur :: Music.Dur,
genericAttr :: attr}

type Boundary = (Pitch.T, Pitch.T)

generic :: Pitch.Class -> T -> Music.Dur -> attr -> Generic attr
generic = Generic

leastVaryingInversions ::
Boundary -> [Generic attr] -> [[Melody.T attr]]

leastVaryingInversions (begin,end) gs =
let beginCenter = fromIntegral (Pitch.toInt begin)

endCenter = fromIntegral (Pitch.toInt end)
steep = (endCenter - beginCenter) / (genericLength gs - 1)
trend = map (\k -> beginCenter + steep * fromIntegral k)

[0 .. (length gs - 1)]
invs = zipWith

(\g t -> round (matchingInversion g t))
gs trend

in zipWith genericToNotes invs gs

inversionIncrement :: T -> Double
inversionIncrement ps = 12 / genericLength ps

matchingInversion :: Generic attr -> Double -> Double
matchingInversion g dst =

let c = chordCenter g
inc = inversionIncrement (genericIntervals g)

27

in (dst-c)/inc

mean :: [Pitch.Relative] -> Double
mean ps = sum (map fromIntegral ps) / genericLength ps

chordCenter :: Generic attr -> Double
chordCenter (Generic pc ps _ _) =

fromIntegral (Pitch.classToInt pc) + mean ps

boundaryCenter :: (Pitch.Octave,Inversion) -> Generic attr -> Double
boundaryCenter (oct,inv) g =

12 * fromIntegral oct + chordCenter g +
fromIntegral inv * inversionIncrement (genericIntervals g)

invert :: Inversion -> T -> T
invert inv ps =

let (q,r) = divMod inv (length ps)
in zipWith (+) ps

(replicate r (12*(q+1)) ++ repeat (12*q))

genericToNotes :: Inversion -> Generic attr -> [Melody.T attr]
genericToNotes inv (Generic pc ps dur attr) =

map (\t -> Melody.note (Pitch.transpose t (0,pc)) dur attr)
(invert inv ps)

A more complicated algorithm will also work for other definitions of variation. We compute the mean
pitch for every chord and minimize the variation of the pitch. The variation is defined here as the sum of the
squared differences of successive chords.

This leads to a shortest ways search in a graph where each inversion of a chord is a node and each
possible neighbourhood of inversions is an edge. The nodes for the inversions of a chord and the nodes for
the inversions of the succeeding chord build a complete bi-partite graph.

First we write a shortest ways search algorithm that is specialised to our problem. In each step we
process one chord. We construct a list of inversions, where each inversion is associated with the optimal
way from the beginning chord to this inversion and its variation. This list passed to the processing of the
next chord. For reasons of simplicity we process the list backwards.

The inputs of the algorithm are a distance function and the list of concurrent inversions for each chord.
The first element of the list contains all starting inversions, the last element contains all ending inversions.
If you want a definitive start and end inversion, use one-element lists. The output is the list of the optimal
inversion for each chord. More precisely it is a list of all optimal ways, where for each starting inversion
there is one optimal way to the closest ending inversion.

shortestWays :: (Num b, Ord b) =>
(a -> a -> b) -> [[a]] -> [(b,[a])]

shortestWays dist =
foldrf (processZone dist) (map (\x->(0,[x])))

processZone :: (Num b, Ord b) =>
(a -> a -> b) -> [a] -> [(b,[a])] -> [(b,[a])]

processZone dist srcs ways =
let distToWay src (d,dst:_) = d + dist src dst

distToWay _ (_,[]) =

28

error "processZone: list is never empty if called from shortestWays"
in map (\src -> minimumBy (comparing fst)

(map (\way -> (distToWay src way, src : snd way)) ways)) srcs

propShortestWays :: Int -> Int -> Bool
propShortestWays n k =

let sws = shortestWays (\x y -> (x-y)^(2::Int))
(replicate n [0..(n*k)] ++ [[0]])

in head sws == (0, replicate (n+1) 0) &&
last sws == (n*k^(2::Int), reverse [0,k..n*k])

This routine could be made more efficient because the centers of the chords with different inversions are
equidistant.

leastVaryingInversionsSW ::
Boundary -> [Generic attr] -> [[Melody.T attr]]

leastVaryingInversionsSW bnd gs =
let dist (_,c0) (_,c1) = (c0-c1)^(2::Int)

[(_,invs)] =
shortestWays dist

(inversionCenters bnd gs)
in zipWith (\(inv,_) -> genericToNotes inv) invs gs

inversionCenters :: Boundary -> [Generic attr] -> [[(Inversion,Double)]]
inversionCenters (begin,end) gs =

let margin = 7
beginCenter = fromIntegral (Pitch.toInt begin)
endCenter = fromIntegral (Pitch.toInt end)
lower = min beginCenter endCenter - margin
upper = max beginCenter endCenter + margin
inversions g =

let c = chordCenter g
inc = inversionIncrement (genericIntervals g)
invs :: [Inversion]
invs = [floor ((lower-c)/inc) ..

ceiling ((upper-c)/inc)]
in map (\inv -> (inv, c + inc * fromIntegral inv)) invs

boundInv g center =
(round (matchingInversion g center), center)

in [[boundInv (head gs) beginCenter]] ++
map inversions (tail (init gs)) ++
[[boundInv (last gs) endCenter]]

Now two helper functions for creating a harmonic and a melodic chord, that is chords of notes of the
same length in sequentially or simultaneously.

melodicGen, harmonicGen :: attr -> Music.Dur ->
[Music.Dur -> attr -> Melody.T attr] -> Melody.T attr

melodicGen attr d = Music.line . map (\n -> n d attr)
harmonicGen attr d = Music.chord . map (\n -> n d attr)

3.1.11 Scales

29

module Haskore.Basic.Scale
(T, ionian, dorian, phrygian, lydian, mixolydian,

aeolian, lokrian, altered, htwt, wtht,
ionianRel, dorianRel, phrygianRel, lydianRel, mixolydianRel,
aeolianRel, lokrianRel, alteredRel, htwtRel, wthtRel,

fromOffsets, fromIntervals, continue) where

import qualified Haskore.Basic.Pitch as Pitch
import Control.Monad(liftM2)

Some of the following code is taken from the EasyScale implementation of Martin Schwenke.

type T = [Pitch.Absolute]
type Intervals = [Pitch.Relative]

Make a scale given a list of absolute pitches, usually starting at 0, and a Pitch.Class representing
the root note of the scale.

fromOffsets :: [Pitch.Absolute] -> Pitch.Class -> T
fromOffsets ns pc

= map (+ Pitch.classToInt pc) ns

Create a scale from a list of intervals between successive notes.

fromIntervals :: Intervals -> Pitch.Class -> T
fromIntervals = fromOffsets . scanl (+) 0

Continue a scale to all octaves.

continue :: T -> T
continue = liftM2 (+) (iterate (12+) 0)

Now some general useful scales from music theory.

ionianRel, dorianRel, phrygianRel, lydianRel, mixolydianRel,
aeolianRel, lokrianRel, alteredRel, htwtRel,
wthtRel :: Intervals

ionianRel = [2, 2, 1, 2, 2, 2, 1]
dorianRel = [2, 1, 2, 2, 2, 1, 2]
phrygianRel = [1, 2, 2, 2, 1, 2, 2]
lydianRel = [2, 2, 2, 1, 2, 2, 1]
mixolydianRel = [2, 2, 1, 2, 2, 1, 2]
aeolianRel = [2, 1, 2, 2, 1, 2, 2]
lokrianRel = [1, 2, 2, 1, 2, 2, 2]
alteredRel = [1, 2, 1, 2, 2, 2, 2]
htwtRel = [1, 2, 1, 2, 1, 2, 1, 2]
wthtRel = [2, 1, 2, 1, 2, 1, 2, 1]

ionian, dorian, phrygian, lydian, mixolydian,
aeolian, lokrian, altered, htwt,
wtht :: Pitch.Class -> T

30

ionian = fromIntervals ionianRel
dorian = fromIntervals dorianRel
phrygian = fromIntervals phrygianRel
lydian = fromIntervals lydianRel
mixolydian = fromIntervals mixolydianRel
aeolian = fromIntervals aeolianRel
lokrian = fromIntervals lokrianRel
altered = fromIntervals alteredRel
htwt = fromIntervals htwtRel
wtht = fromIntervals wthtRel

Example: Alternatively to applying continue to a scale you can create an infinitely increasing scale
using the definition by intervals, e.g. fromIntervals (cycle ionianRel) Pitch.C.

3.1.12 Tempo

module Haskore.Basic.Tempo where

import qualified Haskore.Basic.Pitch as Pitch
import Haskore.Basic.Duration (qn, en, sn, (%+),)
import qualified Haskore.Music as Music
import Haskore.Music(changeTempo, line, (+:+), (=:=),)
import qualified Haskore.Melody as Melody

import qualified Haskore.Basic.Duration as Dur

import qualified Data.List as List

Set tempo. To make it easier to initialize the duration element of a PerformanceContext.T (see
Section 3.2), we can define a “metronome” function that, given a standard metronome marking (in beats per
minute) and the note type associated with one beat (quarter note, eighth note, etc.) generates the duration of
one whole note:

metro :: Fractional a => a -> Music.Dur -> a
metro setting dur = 60 / (setting * Dur.toNumber dur)

Additionally we define some common tempos and some range of interpretation as in Figure 5. This
means, the tempo Andante may vary between fst andanteRange and snd andanteRange beats
per minute. For example, metro andante qn creates a tempo of 92 quarter notes per minute.

Polyrhythms. For some rhythmical ideas, consider first a simple triplet of eighth notes; it can be expressed
as “Tempo (3%2) m”, where m is a line of three eighth notes. In fact Tempo can be used to create quite
complex rhythmical patterns. For example, consider the “nested polyrhythms” shown in Figure 6. They
can be expressed quite naturally in Haskore as follows (note the use of the where clause in pr2 to capture
recurring phrases):

31

largoRange, larghettoRange, adagioRange, andanteRange,
moderatoRange, allegroRange, prestoRange, prestissimoRange
:: Fractional a => (a,a)

largoRange = (40, 60) -- slowly and broadly
larghettoRange = (60, 68) -- a little less slow than largo
adagioRange = (66, 76) -- slowly
andanteRange = (76,108) -- at a walking pace
moderatoRange = (108,120) -- at a moderate tempo
allegroRange = (120,168) -- quickly
prestoRange = (168,200) -- fast
prestissimoRange = (200,208) -- very fast

largo, larghetto, adagio, andante, moderato, allegro,
presto, prestissimo :: Fractional a => a

average :: Fractional a => a -> a -> a
average x y = (x+y)/2

largo = uncurry average largoRange
larghetto = uncurry average larghettoRange
adagio = uncurry average adagioRange
andante = uncurry average andanteRange
moderato = uncurry average moderatoRange
allegro = uncurry average allegroRange
presto = uncurry average prestoRange
prestissimo = uncurry average prestissimoRange

Figure 5: Common names for tempo.

qq qq q qqq q qq qq q

3:2

4:3 3:2

5:6

5:4

3 3

q q qq q qq q qq q q q qq q qq q

5:4 5:4

7:6

pr1

pr2

 .

Figure 6: Nested Polyrhythms

32

pr1, pr2 :: Pitch.T -> Melody.T ()
pr1 p =

changeTempo (5%+6)
(changeTempo (4%+3)

(line [mkLn 1 p qn,
changeTempo (3%+2)

(line [mkLn 3 p en,
mkLn 2 p sn,
mkLn 1 p qn]),

mkLn 1 p qn]) +:+
changeTempo (3%+2) (mkLn 6 p en))

pr2 p =
changeTempo (7%+6)

(line [m1,
changeTempo (5%+4) (mkLn 5 p en),
m1,
mkLn 2 p en])

where m1 = changeTempo (5%+4) (changeTempo (3%+2) m2 +:+ m2)
m2 = mkLn 3 p en

mkLn :: Int -> Pitch.T -> Music.Dur -> Melody.T ()
mkLn n p d = line (take n (List.repeat (Melody.note p d ())))

To play polyrhythms pr1 and pr2 in parallel using middle C and middle G, respectively, we would do the
following (middle C is in the 5th octave):

pr12 :: Melody.T ()
pr12 = pr1 (5, Pitch.C) =:= pr2 (5, Pitch.G)

Symbolic Meter Changes We can implement a notion of “symbolic meter changes” of the form “oldnote
= newnote” (quarter note = dotted eighth, for example) by defining a function:

(=/=) :: Music.Dur -> Music.Dur -> Music.T note -> Music.T note
old =/= new = changeTempo (new/old)

Of course, using the new function is not much longer than using changeTempo directly, but it may have
nemonic value.

3.2 Interpretation and Performance

module Haskore.Performance where

import Haskore.Music(PlayerName, PhraseAttribute)

import qualified Haskore.Basic.Duration as Dur
import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Music as Music
import qualified Data.EventList.Relative.TimeBody as TimeList
import qualified Data.EventList.Relative.TimeTime as TimeListPad

33

import qualified Data.EventList.Relative.TimeMixed as TimeListPad
import qualified Numeric.NonNegative.Class as NonNeg

import Haskore.General.Utility (maximum0,)
import Data.Tuple.HT (mapPair,)
import qualified Data.Record.HT as Record
import Data.Ord.HT (comparing,)
import Control.Monad.Trans.Reader (Reader, runReader, ask, asks, local,)
import Control.Applicative(WrappedMonad(WrapMonad), unwrapMonad,)
import Data.Traversable(sequenceA)
import Data.List (foldl’)

import Prelude hiding (Monad)

Now that we have defined the structure of musical objects, let us turn to the issue of performance, which
we define as a temporally ordered sequence of musical events:

type T time dyn note = TimeList.T time (Event time dyn note)
type Padded time dyn note = TimeListPad.T time (Event time dyn note)

The Padded performance has a trailing time value. It can be considered as the duration after the last
event after which the performance finishes. This need not to be the duration of the last event, as in the
case, where the last note is a short one, that is played while an earlier long note remains playing. Another
exception is a performance which ends with a rest.

data Event time dyn note =
Event {eventDur :: time,

eventDynamics :: dyn,
eventTranspose :: Pitch.Relative,
eventNote :: note}

deriving (Eq, Show)

-- this order is just for the old test cases which rely on it
instance (Ord time, Ord dyn, Ord note) =>

Ord (Event time dyn note) where
compare =

Record.compare
[comparing eventNote,
comparing eventDynamics,
comparing eventTranspose,
comparing eventDur]

An event is the lowest of our music representations not yet committed to Midi, CSound, or the MusicKit.
An event Event {eventDur = d, eventNote = n} captures the fact that the note n respecting
all its attributes is played for a duration d (where now duration is measured in seconds, rather than beats).

We introduce the type variables time and dyn here which are used for time and dynamics quantities.
For every-day use where only efficiency counts you will infer these type variables with Float or Double.
For testing the validity of axioms (see Section 3.2.1) we need exact computation which can be achieved with
Rational.

To generate a complete performance of, i.e. give an interpretation to, a musical object, we must know the
time to begin the performance, and the proper volume, key and tempo. We must also know what players to

34

use; that is, we need a mapping from the PlayerNames in an abstract musical object to the actual players
to be used. (We don’t yet need a mapping from abstract Instrs to instruments, since this is handled in the
translation from a performance into, say, Midi, such as defined in Section 4.2.)

We can thus model a performer as a function fromMusic which maps all of this information and a
musical object into a performance:

fromMusic ::
(NonNeg.C time, RealFrac time, Ord dyn, Fractional dyn, Ord note) =>
PlayerMap time dyn note -> Context time dyn note -> Music.T note -> T time dyn note

type PlayerMap time dyn note = PlayerName -> Player time dyn note
data Context time dyn note =

Context {contextDur :: time,
contextPlayer :: Player time dyn note,
contextTranspose :: Pitch.Relative,
contextDynamics :: dyn}

deriving Show

type UpdateContext time dyn note a =
(a -> a) -> Context time dyn note -> Context time dyn note

updatePlayer :: UpdateContext time dyn note (Player time dyn note)
updatePlayer f c = c {contextPlayer = f (contextPlayer c)}
updateDur :: UpdateContext time dyn note time
updateDur f c = c {contextDur = f (contextDur c)}
updateTranspose :: UpdateContext time dyn note Pitch.Relative
updateTranspose f c = c {contextTranspose = f (contextTranspose c)}
updateDynamics :: UpdateContext time dyn note dyn
updateDynamics f c = c {contextDynamics = f (contextDynamics c)}

fromMusic pmap c@Context {contextStart = t, contextPlayer = pl, contextDur = dt, contextTranspose = k} m =
case m of

Note p d nas -> playNote pl c p d nas
Rest d -> []
m1 :+: m2 -> fromMusic pmap c m1 ++

fromMusic pmap (c {contextStart = t + dur m1 * dt}) m2
m1 :=: m2 -> merge (fromMusic pmap c m1) (fromMusic pmap c m2)
Tempo a m -> fromMusic pmap (c {contextDur = dt / fromRational a}) m
Transpose p m -> fromMusic pmap (c {contextTranspose = k + p}) m
Instrument nm m -> fromMusic pmap (c {cInst = nm}) m
Player nm m -> fromMusic pmap (c {contextPlayer = pmap nm}) m
Phrase pas m -> interpretPhrase pl pmap c pas m

Some things to note:

1. The function monadFromMusic does not simply convert a music object to a performance but it con-
verts a music to an action (Reader monad). Given a context we can start the action by runReader
and we get an event. The way monadFromMusic works is to build a big action from many small
actions.

2. The Context is the running “state” of the performance, and gets updated in several different ways.
For example, the interpretation of the Tempo constructor involves scaling the duration of a whole
note appropriately and updating the contextDur field of the context.

35

fromMusic pmap c = fst . TimeListPad.viewTimeR . paddedFromMusic pmap c

paddedFromMusic ::
(NonNeg.C time, RealFrac time, Ord dyn, Fractional dyn, Ord note) =>
PlayerMap time dyn note -> Context time dyn note ->

Music.T note -> Padded time dyn note
paddedFromMusic pmap c =

TimeListPad.catMaybes . fst . flip runReader c . monadFromMusic pmap

type PaddedWithRests time dyn note =
TimeListPad.T time (Maybe (Event time dyn note))

type Monad time dyn note =
Reader

(Context time dyn note)
(PaddedWithRests time dyn note, time)

sequenceReader :: [Reader r a] -> Reader r [a]
sequenceReader = unwrapMonad . sequenceA . map WrapMonad

combine ::
([performance] -> performance, [time] -> time) ->
[Reader r (performance, time)] ->
Reader r (performance, time)

combine f =
fmap (mapPair f . unzip) . sequenceReader

monadFromMusic ::
(NonNeg.C time, RealFrac time, Ord dyn, Fractional dyn, Ord note) =>
PlayerMap time dyn note -> Music.T note -> Monad time dyn note

monadFromMusic pmap =
Music.foldList

(\d at -> flip fmap ask $ \c ->
let noteDur = Dur.toNumber d * contextDur c

events =
maybe

(TimeList.singleton 0 Nothing)
(TimeList.mapBody Just .
playNote (contextPlayer c) c d) at

in (TimeListPad.snocTime events noteDur, noteDur))
(\ctrl ->

case ctrl of
Music.Tempo a -> local (updateDur (/ Dur.toNumber a))
Music.Transpose p -> local (updateTranspose (+ p))
Music.Player nm -> local (updatePlayer (const (pmap nm)))
Music.Phrase pa -> \m ->

asks contextPlayer >>= \pl -> interpretPhrase pl pa m)
(combine (TimeListPad.concat, sum))
(combine (foldl’ TimeListPad.merge (TimeListPad.pause 0), maximum0))

This implementation fails on
mel = a 0 wn () +:+ b 0 wn () =:= rest qn +:+ mel

{- this does only work if the performance in the Monad does not have a Maybe for each note

monadFromMusicOld :: (Ord time, Fractional time, Ord note) =>
PlayerMap time dyn note -> Music.T note ->
Reader (Context time dyn note) (Padded time dyn note, time)

monadFromMusicOld pmap =
Music.foldList

(\d at -> flip fmap ask $ \c ->
let noteDur = fromRational d * contextDur c
in ((case at of

Just note -> playNote (contextPlayer c) c d note
Nothing -> [],

noteDur), noteDur))
(\ctrl ->

case ctrl of
Music.Tempo a -> local (updateDur (/ fromRational a))
Music.Transpose p -> local (updateTranspose (+ p))
Music.Player nm -> local (updatePlayer (const (pmap nm)))
Music.Phrase pa -> \m ->

asks contextPlayer >>= \pl -> interpretPhrase pl pa m)
(combine (TimeListPad.concat, sum))
(combine (foldl’ TimeListPad.merge ([], 0), maximum0))

-}

Figure 7: The “real” fromMusic function.

36

It’s better not to manipulate the members of Context directly, but to use the abstractions
from PerformanceContext. This way we can stay independent of the concrete definition of
Context. (I would like to define this data structure in PerformanceContext but the current
Haskell compilers have a complicated handling of mutually dependent modules.)

3. Interpretation of notes and phrases is player dependent. Ultimately a single note is played by the
playNote function, which takes the player as an argument. Similarly, phrase interpretation is also
player dependent, reflected in the use of interpretPhrase. Precisely how these two functions
work is described in Section 3.3.

4. The Dur component of the context is the duration, in seconds, of one whole note. See Section 3.1.12
for assisting functions.

5. In the treatment of Serial, note that the sub-sequences are appended together, with the start time of
the second argument delayed by the duration of the first. The function dur (defined in Section 3.1.5) is
used to compute this duration. Note that this results in a quadratic time complexity for fromMusic.
A more efficient solution is to have fromMusic compute the duration directly, returning it as part of
its result. This version of fromMusic is shown in Figure 7.

6. In contrast, the sub-sequences derived from the arguments to Parallel are merged
into a time-ordered stream. This is done with merge from the module module
Data.EventList.Relative.TimeTime.

3.2.1 Equivalence of Literal Performances

A literal performance is one in which no aesthetic interpretation is given to a musical object. The function
Pf.fromMusic in fact yields a literal performance; aesthetic nuances must be expressed explicitly using
note and phrase attributes.

There are many musical objects whose literal performances we expect to be equivalent. For example,
the following two musical objects are certainly not equal as data structures, but we would expect their literal
performances to be identical:

(m0 +:+ m1) +:+ (m2 +:+ m3)
m0 +:+ m1 +:+ m2 +:+ m3

Thus we define a notion of equivalence:

6 Definition. Two musical objects m0 and m1 are equivalent, written m0 ≡ m1, if and only if:

(∀imap,c) Pf.fromMusic imap c m0 = Pf.fromMusic imap c m1

where “=” is equality on values (which in Haskell is defined by the underlying equational logic).

One of the most useful things we can do with this notion of equivalence is establish the validity of
certain transformations on musical objects. A transformation is valid if the result of the transformation is
equivalent (in the sense defined above) to the original musical object; i.e. it is “meaning preserving”. Some

37

of these connections are used in the module Optimization (Section 5.1) in order to simplify a musical
data structure.

The most basic of these transformation we treat as axioms in an algebra of music. For example:

7 Axiom. For any r0, r1, and m:

changeTempo r0 (changeTempo r1 m) ≡ changeTempo (r0*r1) m

To prove this axiom, we use conventional equational reasoning (for clarity we omit imap, simplify the
context to just dt, and omit fromRational):

Proof.

Pf.fromMusic dt (changeTempo r0 (changeTempo r1 m))
= Pf.fromMusic (dt / r0) (changeTempo r1 m) -- unfolding Pf.fromMusic
= Pf.fromMusic ((dt / r0) / r1) m -- unfolding Pf.fromMusic
= Pf.fromMusic (dt / (r0 * r1)) m -- simple arithmetic
= Pf.fromMusic dt (changeTempo (r0*r1) m) -- folding Pf.fromMusic

Here is another useful transformation and its validity proof (for clarity in the proof we omit imap and
simplify the context to just (t,dt)):

8 Axiom. For any r, m0, and m1:

changeTempo r (m0 +:+ m1) ≡ changeTempo r m0 +:+ changeTempo r m1

In other words, tempo scaling distributes over sequential composition.

Proof.

Pf.fromMusic (t,dt) (changeTempo r (m0 +:+ m1))
= Pf.fromMusic (t,dt/r) (m0 +:+ m1) -- unfolding Pf.fromMusic
= Pf.fromMusic (t,dt/r) m0 ++

Pf.fromMusic (t’,dt/r) m1 -- unfolding Pf.fromMusic
= Pf.fromMusic (t,dt) (changeTempo r m0) ++

Pf.fromMusic (t’,dt) (changeTempo r m1) -- folding Pf.fromMusic
where t’ = t + dur m0 * dt/r

= Pf.fromMusic (t,dt) (changeTempo r m0) ++
Pf.fromMusic (t’’,dt) (changeTempo r m1) -- folding dur

where t’’ = t + dur (changeTempo r m0) * dt
= Pf.fromMusic (t,dt)

(changeTempo r m0 +:+ changeTempo r m1) -- folding Pf.fromMusic

38

q q qq

3

.q

3

q q q =

Figure 8: Equivalent Phrases

An even simpler axiom is given by:

9 Axiom. For any m:

changeTempo 1 m ≡ m

In other words, unit tempo scaling is the identity.

Proof.

Pf.fromMusic (t,dt) (changeTempo 1 m)
= Pf.fromMusic (t,dt/1) m -- unfolding Pf.fromMusic
= Pf.fromMusic (t,dt) m -- simple arithmetic

Note that the above proofs, being used to establish axioms, all involve the definition of
Pf.fromMusic. In contrast, we can also establish theorems whose proofs involve only the axioms. For
example, Axioms 1, 2, and 3 are all needed to prove the following:

10 Theorem. For any r, m0, and m1:

changeTempo r m0 +:+ m1 ≡ changeTempo r (m0 +:+ changeTempo (recip r)
m1)

Proof.

changeTempo r (m0 +:+ changeTempo (recip r) m1)
= changeTempo r m0 +:+ changeTempo r (changeTempo (recip r) m1)

-- by Axiom 1
= changeTempo r m0 +:+ changeTempo (r * recip r) m1 -- by Axiom 2
= changeTempo r m0 +:+ changeTempo 1 m1 -- simple arithmetic
= changeTempo r m0 +:+ m1 -- by Axiom 3

For example, this fact justifies the equivalence of the two phrases shown in Figure 8.

Many other interesting transformations of Haskore musical objects can be stated and proved correct
using equational reasoning. We leave as an exercise for the reader the proof of the following axioms (which
include the above axioms as special cases).

39

The following axioms are additionally given in a way which allows automatic tests using the
QuickCheck package. http://www.cs.chalmers.se/~rjmh/QuickCheck/ The properties are
formulated as functions but they can translated one-by-one from the axioms stated in mathematical notation.

module Equivalence where

import Haskore.Music hiding (repeat, reverse, dur)
import qualified Haskore.Music.GeneralMIDI as MidiMusic

-- should also work for general RhyMusic but is a bit more cumbersome
import qualified Haskore.Performance as Performance
import qualified Haskore.Performance.Default as DefltPf
import qualified Haskore.Performance.Player as Player

import qualified Haskore.Basic.Duration as Dur
import qualified Data.EventList.Relative.TimeTime as TimeListPad
import qualified Numeric.NonNegative.Wrapper as NonNeg
import Data.Tuple.HT (mapFst,)

import Control.Monad.Trans.Reader (runReader,)

import Test.QuickCheck

We define operators =?= and ==?== which play the role of our previously defined equivalence sign
“≡”. The operator =?= compares plain pieces of music, whereas the operator ==?== compares func-
tions mapping to music. We will use the second one mainly in order to compare music transformers like
changeTempo and transpose.

infix 4 =?=, ==?==

(=?=) :: MidiMusic.T -> MidiMusic.T -> Bool
(=?=) m0 m1 =

let pl = DefltPf.map :: Player.Map NonNeg.Rational Rational MidiMusic.Note
perform m =

mapFst TimeListPad.catMaybes $
runReader (Performance.monadFromMusic pl m) DefltPf.context

in perform m0 == perform m1

(==?==) :: (a -> MidiMusic.T) -> (a -> MidiMusic.T) -> (a -> Bool)
(==?==) fm0 fm1 x = fm0 x =?= fm1 x

Here we repeat one of the simple axioms, now also with a test function ready for quick-checking.

11 Axiom. Changing the tempo by 1 and transposing by 0 are identities. That is:

changeTempo 1 ≡ id
transpose 0 ≡ id

propTempoNeutral, propTransposeNeutral :: MidiMusic.T -> Bool

propTempoNeutral = changeTempo 1 ==?== id

propTransposeNeutral = transpose 0 ==?== id

40

http://www.cs.chalmers.se/~rjmh/QuickCheck/

The first QuickCheck test function reads as: “The property of a neutral tempo change is that changing
the tempo by one is equivalent to the identity function.” It says everything we want to state and not more. It
is available in a machine readable form ready both for static provers and for tests by execution. QuickCheck
will call these functions on several randomly generated pieces of music. These songs might sound awful, so
they should be exotically enough in order to check whether our axioms are not only true for common music.

12 Axiom. changeTempo is multiplicative and transpose is additive. That is, for any r0, r1, p0, p1:

changeTempo r0 . changeTempo r1 ≡ changeTempo (r0*r1)
transpose p0 . transpose p1 ≡ transpose (p0+p1)

propTempoTempo ::
Dur.Ratio -> Dur.Ratio -> MidiMusic.T -> Property

propTempoTempo r0 r1 m =
r0 > 0 && r1 > 0 ==>

(changeTempo r0 . changeTempo r1 ==?==
changeTempo (r0*r1)) m

propTransposeTranspose ::
Int -> Int -> MidiMusic.T -> Bool

propTransposeTranspose p0 p1 =
transpose p0 . transpose p1 ==?== transpose (p0+p1)

The first equation needs the precondition of non-zero tempo changes. Changing the tempo to zero
causes a division by zero when Pf.fromMusic recomputes the duration of a whole note. Because of the
precondition we can no longer have Bool as function value but we must use Property which stores not
only the result of the test but also if the precondition was fulfilled. Test cases where the precondition fail do
not count in the maximum number of tests performed per test function.

13 Axiom. Function composition is commutative with respect to both tempo scaling and transposition. That
is, for any r0, r1, p0 and p1:

changeTempo r0 . changeTempo r1 ≡ changeTempo r1 . changeTempo r0
transpose p0 . transpose p1 ≡ transpose p1 . transpose p0

changeTempo r0 . transpose p0 ≡ transpose p0 . changeTempo r0

propTempoCommutativity :: Dur.Ratio -> Dur.Ratio -> MidiMusic.T -> Property
propTempoCommutativity r0 r1 m =

r0 > 0 && r1 > 0 ==>
(changeTempo r0 . changeTempo r1 ==?==
changeTempo r1 . changeTempo r0) m

propTransposeCommutativity :: Int -> Int -> MidiMusic.T -> Bool
propTransposeCommutativity p0 p1 =

transpose p0 . transpose p1 ==?== transpose p1 . transpose p0

propTempoTransposeCommutativity ::
Dur.Ratio -> Int -> MidiMusic.T -> Property

propTempoTransposeCommutativity r p m =
r > 0 ==>

(changeTempo r . transpose p ==?==
transpose p . changeTempo r) m

41

14 Axiom. Tempo scaling and transposition are distributive over both sequential and parallel composition.
That is, for any r, p, m0, and m1:

changeTempo r (m0 +:+ m1) ≡ changeTempo r m0 +:+ changeTempo r m1
changeTempo r (m0 =:= m1) ≡ changeTempo r m0 =:= changeTempo r m1

transpose p (m0 +:+ m1) ≡ transpose p m0 +:+ transpose p m1
transpose p (m0 =:= m1) ≡ transpose p m0 =:= transpose p m1

propTempoSerial, propTempoParallel ::
Dur.Ratio -> MidiMusic.T -> MidiMusic.T -> Property

propTempoSerial r m0 m1 =
r > 0 ==>

changeTempo r (m0 +:+ m1) =?=
changeTempo r m0 +:+ changeTempo r m1

propTempoParallel r m0 m1 =
r > 0 ==>

changeTempo r (m0 =:= m1) =?=
changeTempo r m0 =:= changeTempo r m1

propTransposeSerial, propTransposeParallel ::
Int -> MidiMusic.T -> MidiMusic.T -> Bool

propTransposeSerial p m0 m1 =
transpose p (m0 +:+ m1) =?= transpose p m0 +:+ transpose p m1

propTransposeParallel p m0 m1 =
transpose p (m0 =:= m1) =?= transpose p m0 =:= transpose p m1

15 Axiom. Sequential and parallel composition are associative. That is, for any m0, m1, and m2:

m0 +:+ (m1 +:+ m2) ≡ (m0 +:+ m1) +:+ m2
m0 =:= (m1 =:= m2) ≡ (m0 =:= m1) =:= m2

propSerialAssociativity, propParallelAssociativity ::
MidiMusic.T -> MidiMusic.T -> MidiMusic.T -> Bool

propSerialAssociativity m0 m1 m2 =
m0 +:+ (m1 +:+ m2) =?= (m0 +:+ m1) +:+ m2

propParallelAssociativity m0 m1 m2 =
m0 =:= (m1 =:= m2) =?= (m0 =:= m1) =:= m2

16 Axiom. Parallel composition is commutative. That is, for any m0 and m1:

m0 =:= m1 ≡ m1 =:= m0

propParallelCommutativity ::
MidiMusic.T -> MidiMusic.T -> Bool

propParallelCommutativity m0 m1 =
m0 =:= m1 =?= m1 =:= m0

42

17 Axiom. Rest 0 is a unit for changeTempo and transpose, and a zero for sequential and parallel
composition. That is, for any r, p, and m:

changeTempo r (Rest 0) ≡ Rest 0
transpose p (Rest 0) ≡ Rest 0

m +:+ Rest 0 ≡ m ≡ Rest 0 +:+ m
m =:= Rest 0 ≡ m ≡ Rest 0 =:= m

propTempoRest0 :: Dur.Ratio -> Property
propTempoRest0 r =

r > 0 ==>
changeTempo r (rest 0) =?= rest 0

propTransposeRest0 :: Int -> Bool
propTransposeRest0 p = transpose p (rest 0) =?= rest 0

propSerialNeutral0, propSerialParallel0,
propSerialNeutral1, propSerialParallel1 ::
MidiMusic.T -> Bool

propSerialNeutral0 m = m +:+ rest 0 =?= m
propSerialNeutral1 m = rest 0 +:+ m =?= m
propSerialParallel0 m = m =:= rest 0 =?= m
propSerialParallel1 m = rest 0 =:= m =?= m

18 Exercise. Establish the validity of each of the above axioms.

3.3 Players

In the last section we saw how a performance involved the notion of a player. The reason for this is the
same as for real players and their instruments: many of the note and phrase attributes (see Section 3.1.8) are
player and instrument dependent. For example, how should “legato” be interpreted in a performance? Or
“diminuendo”? Different players interpret things in different ways, of course, but even more fundamental is
the fact that a pianist, for example, realizes legato in a way fundamentally different from the way a violinist
does, because of differences in their instruments. Similarly, diminuendo on a piano and a harpsichord are
different concepts.

With a slight stretch of the imagination, we can even consider a “notator” of a score as a kind of player:
exactly how the music is rendered on the written page may be a personal, stylized process. For example,
how many, and which staves should be used to notate a particular instrument?

In any case, to handle these issues, Haskore has a notion of a player which “knows” about differences
with respect to performance and notation. A Haskore player is a 4-tuple consisting of a name and three
functions: one for interpreting notes, one for phrases, and one for producing a properly notated score.

data Player time dyn note =
PlayerCons { name :: PlayerName,

playNote :: NoteFun time dyn note,
interpretPhrase :: PhraseFun time dyn note,
notatePlayer :: NotateFun }

instance (Show time, Show dyn) => Show (Player time dyn note) where

43

show p = "Player.cons " ++ name p

type NoteFun time dyn note =
Context time dyn note -> Music.Dur -> note -> T time dyn note

type PhraseFun time dyn note =
PhraseAttribute -> Monad time dyn note -> Monad time dyn note

type NotateFun = ()

The last line above is because notation is currently not implemented. Note that both NotateFun and
PhraseFun functions return a Performance.T.

module Haskore.Performance.Player where

import Haskore.Music (PhraseAttribute,)
import qualified Haskore.Music as Music
-- import qualified Haskore.Performance.Context as Context

-- this import would cause a cycle
import qualified Haskore.Performance as Pf
-- import qualified Data.EventList.Relative.TimeBody as TimeList
import qualified Data.EventList.Relative.TimeTime as TimeListPad
import qualified Data.EventList.Relative.TimeMixed as TimeListPad
import qualified Haskore.Basic.Duration as Dur
import qualified Numeric.NonNegative.Class as NonNeg
import Haskore.Performance (eventDur, eventDynamics,)
import Data.Tuple.HT (mapFst,)

import Control.Monad.Trans.Reader(Reader, asks,)
import Control.Monad (liftM,)

type T time dyn note = Pf.Player time dyn note
-- constructors can’t be renamed, we might use a function instead
-- cons = Pf.PlayerCons

type Name = Music.PlayerName
type Map time dyn note = Pf.PlayerMap time dyn note

type PhraseInterpreter time dyn note =
PhraseAttribute -> (Pf.T time dyn note, time) -> (Pf.T time dyn note, time)

type EventModifier time dyn note =
Pf.Event time dyn note -> Pf.Event time dyn note

changeVelocity :: Num dyn => (dyn -> dyn) ->
EventModifier time dyn note

changeVelocity f =
(\e -> e {eventDynamics = f (eventDynamics e)})

changeDur :: Num time => (time -> time) ->
EventModifier time dyn note

changeDur f =
(\e -> e {eventDur = f (eventDur e)})

Figure 10 defines a relatively sophisticated player called fancyPlayer that knows all that
Player.deflt knows, and much more.

44

All three articulations Staccato, Legato, Slurred are interpreted as changing the duration of the
notes proportionally. That’s why they have the suffix Rel for relative.

• The function legatoRel takes a ratio of each note’s duration. In order to obtain a real Legato effect
the value must be larger than 1.

• The function slurredRel is similar to legatoRel but it doesn’t extend the duration of the last
note(s).

• The function staccatoRel divides the note durations by constant factor. In order to obtain a real
Staccato effect the value must be larger than 1.

staccatoRel, legatoRel, slurredRel :: (NonNeg.C time, Fractional time) =>
Dur.T -> Pf.Monad time dyn note -> Pf.Monad time dyn note

staccatoRel x = mapEvents (changeDur (/ Dur.toNumber x))
legatoRel x = mapEvents (changeDur (* Dur.toNumber x))
slurredRel x = mapInitEvents (changeDur (* Dur.toNumber x))

mapInitEvents :: (NonNeg.C time, Num time) =>
EventModifier time dyn note ->

Pf.Monad time dyn note -> Pf.Monad time dyn note
mapInitEvents f =

let -- modify durations of all notes except those with the latest start time
aux =

TimeListPad.flatten .
TimeListPad.mapTimeInit

(TimeListPad.mapBodyInit
(TimeListPad.mapBody (map (fmap f)))) .

TimeListPad.collectCoincident
in liftM (mapFst aux)

mapEvents :: EventModifier time dyn note ->
Pf.Monad time dyn note -> Pf.Monad time dyn note

mapEvents f = liftM (mapFst (TimeListPad.mapBody (fmap f)))

In contrast to the relative interpretations above, we feel that somehow absolute changes are more useful.
That’s why we make these functions the default for the fancy player. These function expect regular note
durations, that is ratios of a whole note.

• The functions legatoAbs and slurredAbs prolong notes by a fix amount. That is the overlap (if
no rests are between) is constant.

• staccatoAbs replaces the note durations by a fix amount.

staccatoAbs, legatoAbs, slurredAbs :: (NonNeg.C time, Fractional time) =>
Dur.T -> Pf.Monad time dyn note -> Pf.Monad time dyn note

staccatoAbs dur pf =
getDurModifier const dur >>= flip mapEvents pf

legatoAbs dur pf =
getDurModifier (+) dur >>= flip mapEvents pf

slurredAbs dur pf =

45

getDurModifier (+) dur >>= flip mapInitEvents pf

getDurModifier :: (Fractional time) =>
(time -> time -> time) -> Dur.T ->

Reader (Pf.Context time dyn note) (EventModifier time dyn note)
getDurModifier f dur =

do tempo <- asks Pf.contextDur
return (changeDur (f (Dur.toNumber dur * tempo)))

The behavior of (Ritardando x) can be explained as follows. We’d like to “stretch” the time of
each event by a factor from 0 to x, linearly interpolated based on how far along the musical phrase the event
occurs. I.e., given a start time t0 for the first event in the phrase, total phrase duration D, and event time t,
the new event time t′ is given by:

t′ =

(
1 +

t− t0
D
· x

)
· (t− t0) + t0

Further, if d is the duration of the event, then the end of the event t+ d gets stretched to a new time t′d given
by:

t′d =

(
1 +

t+ d− t0
D

· x
)
· (t+ d− t0) + t0

The difference t′d − t′ gives us the new, stretched duration d′, which after simplification is:

d′ =

(
1 +

2 · (t− t0) + d

D
· x

)
· d

Accelerando behaves in exactly the same way, except that it shortens event times rather than lengthening
them. And, a similar but simpler strategy explains the behaviors of Crescendo and Diminuendo.

accent :: (Fractional dyn) =>
Rational -> Pf.Monad time dyn note -> Pf.Monad time dyn note

accent x = mapEvents (changeVelocity (fromRational x +))

3.4 Conversion functions with default settings

3.4.1 Examples of Player Construction

A “default player” called Default.player (not to be confused with “deaf player”!) is defined for use
when none other is specified in the score; it also functions as a base from which other players can be derived.
Default.player responds only to the Velocity note attribute and to the Accent, Staccato, and
Legato phrase attributes. It is defined in Figure 9. Before reading this code, recall how players are
invoked by the Performance.fromMusic function defined in the last section; in particular, note the
calls to playNote and interpretPhase defined above. Then note:

46

1. defltPlayNote is the only function (even in the definition of Performance.fromMusic) that
actually generates an event. It also modifies that event based on an interpretation of each note attribute
by the function defltNasHandler.

2. defltNasHandler only recognizes the Velocity attribute, which it uses to set the event velocity
accordingly.

3. defltInterpPhrase calls (mutually recursively) Performance.fromMusic to interpret a
phrase, and then modifies the result based on an interpretation of each phrase attribute by the function
defltInterpPhrase.

4. defltInterpPhrase only recognizes the Accent, Staccato, and Legato phrase attributes.
For each of these it uses the numeric argument as a “scaling” factor of the volume (for Accent)
and duration (for Staccato and Legato). Thus (Phrase (Legato 1.1) m) effectively in-
creases the duration of each note in m by 10% (without changing the tempo).

It should be clear that much of the code in Figure ?? can be re-used in defining a new player. For
example, to define a player weird that interprets note attributes just like Default.player but behaves
differently with respect to phrase attributes, we could write:

weird = Performance.PlayerCons {
pname = "Weirdo",
playNote = defltPlayNote defltNasHandler,
interpretPhrase = liftM . myPhraseInterpreter
notatePlayer = defltNotatePlayer ()

}

and then supply a suitable definition of myPhraseInterpreter. That definition could also re-use code,
in the following sense: suppose we wish to add an interpretation for Crescendo, but otherwise have
myPhraseInterpreter behave just like defltInterpPhrase.

myPhraseInterpreter (Dyn (Crescendo x)) pf = ...
myPhraseInterpreter pa pf = defltInterpPhrase pa pf

19 Exercise. Fill in the ... in the definition of myPhraseInterpreter according to the following
strategy: Assume 0 < x < 1. Gradually scale the volume of each event by a factor of 1.0 through 1.0 + x,
using linear interpolation.

20 Exercise. Choose some of the other phrase attributes and provide interpretations of them, such as
Diminuendo, Slurred, Trill, etc. (The trill functions from Section 3.1.5 may be useful here.)

module Haskore.Performance.Default where

import qualified Haskore.Music as Music
import qualified Haskore.Performance as Performance
import qualified Haskore.Performance.Context as Context
import qualified Haskore.Performance.Player as Player

import qualified Data.EventList.Relative.TimeBody as TimeList

47

import qualified Haskore.Basic.Tempo as Tempo
import qualified Haskore.Basic.Duration as Dur

import qualified Numeric.NonNegative.Class as NonNeg
import qualified Numeric.NonNegative.Wrapper as NonNegW

import Prelude hiding (map)

fromMusic ::
(Ord note, NonNeg.C time, RealFrac time, Fractional dyn, Ord dyn) =>
Music.T note -> Performance.T time dyn note

fromMusic =
Performance.fromMusic map context

fromMusicModifyContext ::
(Ord note, NonNeg.C time, RealFrac time, Fractional dyn, Ord dyn) =>
(Context.T time dyn note -> Context.T time dyn note) ->
Music.T note ->
Performance.T time dyn note

fromMusicModifyContext update =
Performance.fromMusic

map
(update context)

floatFromMusic :: (Ord note) =>
Music.T note -> Performance.T NonNegW.Float Float note

floatFromMusic = fromMusic

paddedFromMusic ::
(Ord note, NonNeg.C time, RealFrac time, Fractional dyn, Ord dyn) =>
Music.T note -> Performance.Padded time dyn note

paddedFromMusic =
Performance.paddedFromMusic map context

paddedFromMusicModifyContext ::
(Ord note, NonNeg.C time, RealFrac time, Fractional dyn, Ord dyn) =>
(Context.T time dyn note -> Context.T time dyn note) ->
Music.T note ->
Performance.T time dyn note

paddedFromMusicModifyContext update =
Performance.fromMusic

map
(update context)

3.5 Conversion functions with default settings

module Haskore.Performance.Fancy where

import qualified Haskore.Music as Music
import qualified Haskore.Performance as Performance
import qualified Haskore.Performance.Context as Context
import qualified Haskore.Performance.Player as Player
import qualified Haskore.Performance.Default as DefltPf

48

-- default is a reserved keyword
player ::

(NonNeg.C time, Fractional time, Real time, Fractional dyn) =>
Player.T time dyn note

player = map "Default"

-- a default PMap that makes everything into a Default.player
map ::

(NonNeg.C time, Fractional time, Real time, Fractional dyn) =>
Player.Name -> Player.T time dyn note

map pname =
Performance.PlayerCons {

Performance.name = pname,
Performance.playNote = playNote,
Performance.interpretPhrase = interpretPhrase,
Performance.notatePlayer = notatePlayer ()

}

playNote :: (Fractional time, Real time) =>
Performance.NoteFun time dyn note

playNote
(Performance.Context curDur _ curKey curVelocity) d note =

TimeList.singleton 0
(Performance.Event {

Performance.eventDur = Dur.toNumber d * curDur,
Performance.eventTranspose = curKey,
Performance.eventDynamics = curVelocity,
Performance.eventNote = note })

interpretPhrase ::
(NonNeg.C time, Fractional time, Fractional dyn) =>
Performance.PhraseFun time dyn note

interpretPhrase (Music.Dyn (Music.Accent x)) = Player.accent x
interpretPhrase (Music.Art (Music.Staccato x)) = Player.staccatoAbs x
interpretPhrase (Music.Art (Music.Legato x)) = Player.legatoAbs x
interpretPhrase _ = id

notatePlayer :: () -> Performance.NotateFun
notatePlayer _ = ()

context ::
(NonNeg.C time, Fractional time, Real time, Fractional dyn) =>
Context.T time dyn note

context =
Performance.Context {

Performance.contextPlayer = player,
Performance.contextDur = Tempo.metro 60 Dur.qn,
Performance.contextTranspose = 0,
Performance.contextDynamics = 1

}

Figure 9: Definition of default Player Default.player.

49

import Haskore.Performance (eventDur,)

-- import qualified Data.EventList.Relative.TimeBody as TimeList
-- import qualified Data.EventList.Relative.TimeTime as TimeListPad
import qualified Data.EventList.Relative.MixedTime as TimeListPad
import qualified Data.EventList.Relative.BodyTime as BodyTimeList

import Control.Monad.Trans.State (state, evalState,)
import Control.Monad.Trans.Reader (local,)

import qualified Numeric.NonNegative.Class as NonNeg
import qualified Numeric.NonNegative.Wrapper as NonNegW

import Prelude hiding (map)

fromMusic ::
(Ord note, NonNeg.C time, RealFrac time, Fractional dyn, Ord dyn) =>
Music.T note -> Performance.T time dyn note

fromMusic =
Performance.fromMusic map context

fromMusicModifyContext ::
(Ord note, NonNeg.C time, RealFrac time, Fractional dyn, Ord dyn) =>
(Context.T time dyn note -> Context.T time dyn note) ->
Music.T note ->
Performance.T time dyn note

fromMusicModifyContext update =
Performance.fromMusic

map
(update context)

floatFromMusic :: (Ord note) =>
Music.T note -> Performance.T NonNegW.Float Float note

floatFromMusic = fromMusic

paddedFromMusic ::
(Ord note, NonNeg.C time, RealFrac time, Fractional dyn, Ord dyn) =>
Music.T note -> Performance.Padded time dyn note

paddedFromMusic =
Performance.paddedFromMusic map context

doublePaddedFromMusic ::
(Ord note) =>
Music.T note -> Performance.Padded NonNegW.Double Double note

doublePaddedFromMusic =
Performance.paddedFromMusic map context

paddedFromMusicModifyContext ::
(Ord note, NonNeg.C time, RealFrac time, Fractional dyn, Ord dyn) =>
(Context.T time dyn note -> Context.T time dyn note) ->
Music.T note ->
Performance.T time dyn note

paddedFromMusicModifyContext update =
Performance.fromMusic

50

player :: (NonNeg.C time, Fractional time, Real time, Fractional dyn) =>
Player.T time dyn note

player = map "Fancy"

-- a PMap that makes everything into a fancyPlayer
map ::

(NonNeg.C time, Fractional time, Real time, Fractional dyn) =>
String -> Player.T time dyn note

map pname =
Performance.PlayerCons {

Performance.name = pname,
Performance.playNote = DefltPf.playNote,
Performance.interpretPhrase = fancyInterpretPhrase,
Performance.notatePlayer = DefltPf.notatePlayer ()

}

processPerformance :: (Num time) =>
(time ->

(time -> time -> time,
time -> Performance.Event time dyn note -> Performance.Event time dyn note,
time)) ->

(Performance.PaddedWithRests time dyn note, time) ->
(Performance.PaddedWithRests time dyn note, time)

processPerformance f (pf, dur) =
let (fTime, fEvent, newDur) = f dur

procPf =
flip evalState 0 .
BodyTimeList.mapM

(\dt -> state $ \t -> (fTime t dt, t+dt))
(\ev -> state $ \t -> (fmap (fEvent t) ev, t))

in (TimeListPad.mapTimeTail procPf pf, newDur)

fancyInterpretDynamic ::
(Fractional time, Real time, Fractional dyn) =>
Music.Dynamic -> Performance.Monad time dyn note -> Performance.Monad time dyn note

fancyInterpretDynamic dyn =
let loud x = local (Performance.updateDynamics (fromRational x *))

inflate add x dur =
let r = fromRational x / realToFrac dur
in (const id,

\t -> Player.changeVelocity (add (realToFrac t * r)),
dur)

in case dyn of
Music.Accent x -> Player.accent x
Music.Loudness x -> loud x
Music.Crescendo x -> fmap (processPerformance (inflate (+) x))
Music.Diminuendo x -> fmap (processPerformance (inflate subtract x))

-- Music.Crescendo x -> fmap (processPerformance (inflate x))
-- Music.Diminuendo x -> fmap (processPerformance (inflate (-x)))

fancyInterpretTempo :: (Fractional time, Real time) =>
Music.Tempo -> Performance.Monad time dyn note -> Performance.Monad time dyn note

fancyInterpretTempo tmp =
let stretch add x dur =

let x’ = fromRational x
r = x’ / dur
fac t dt = add 1 (r * (2*t + dt))

in (\t dt -> dt * fac t dt,
\t (e@Performance.Event {eventDur = d}) ->

e{eventDur = d * fac t d },
dur * add 1 x’)

in case tmp of
Music.Ritardando x -> fmap (processPerformance (stretch (+) x))
Music.Accelerando x -> fmap (processPerformance (stretch (-) x))

-- Music.Accelerando x -> fmap (processPerformance (stretch (\a b -> if a>=b then a-b else 0) x))

fancyInterpretArticulation :: (NonNeg.C time, Fractional time) =>
Music.Articulation -> Performance.Monad time dyn note -> Performance.Monad time dyn note

fancyInterpretArticulation art =
case art of

Music.Staccato x -> Player.staccatoAbs x
Music.Legato x -> Player.legatoAbs x
Music.Slurred x -> Player.slurredAbs x
_ -> id

{- Remaining articulations:
Tenuto | Marcato | Pedal | Fermata | FermataDown

| Breath | DownBow | UpBow | Harmonic | Pizzicato
| LeftPizz | BartokPizz | Swell | Wedge | Thumb | Stopped -}

fancyInterpretOrnament :: (Fractional time, Real time) =>
Music.Ornament -> Performance.Monad time dyn note -> Performance.Monad time dyn note

fancyInterpretOrnament _orn = id
{- Remaining ornamenations:

Trill | Mordent | InvMordent | DoubleMordent | Turn
| TrilledTurn | ShortTrill | Arpeggio | ArpeggioUp
| ArpeggioDown | Instruction String | Head NoteHead -}

{- Design Problem: To do these right we need to keep the KEY SIGNATURE
around so that we can determine, for example, what the trill note is.
Alternatively, provide an argument to Trill to carry this info. -}

fancyInterpretPhrase ::
(NonNeg.C time, Fractional time, Real time, Fractional dyn) =>
Performance.PhraseFun time dyn note

fancyInterpretPhrase pa =
case pa of

Music.Dyn dyn -> fancyInterpretDynamic dyn
Music.Tmp tmp -> fancyInterpretTempo tmp
Music.Art art -> fancyInterpretArticulation art
Music.Orn orn -> fancyInterpretOrnament orn

context ::
(NonNeg.C time, Fractional time, Real time, Fractional dyn) =>
Context.T time dyn note

context = DefltPf.context {Performance.contextPlayer = player}

Figure 10: Definition of Player Fancy.player.

51

map
(update context)

4 Interfaces to other musical software

4.1 Connect Performance to a Back-End

module Haskore.Performance.BackEnd where

import qualified Haskore.Performance as Pf
import qualified Haskore.Music as Music
import qualified Haskore.Basic.Pitch as Pitch
import qualified Data.EventList.Relative.TimeBody as TimeList
import qualified Data.EventList.Relative.TimeTime as TimeListPad

import Haskore.Music ((=:=), (+:+))

The performance data structure is still bound to music specific data. We still have to convert that into
back-end specific data, such as MIDI events, CSound statements, SuperCollider messages or other. The new
data type Performance.BackEnd.T is similar to Performance.T, but does not contain transposition
or dynamics information any longer. Also music-specific data is converted to back-end specific data.

Later we have to provide converters from each type of music to each back-end. This requires combina-
torial amount of implementation work but it is the most flexible way to do so. We expect only a few general
types of music which fit to many back-ends, and many music types specialised to features of a particular
back-end. It would be certainly less work to have an universal intermediate, but this restricts the flexibility.

type T time note = TimeList.T time (Event time note)
type Padded time note = TimeListPad.T time (Event time note)

data Event time note =
Event {eventDur :: time,

eventNote :: note}
deriving (Eq, Ord, Show)

Now we provide a function which simplifies conversion from a Performance.Event to a
Performance.BackEnd.Event in case that this conversion does not depend on the event time and
duration.

instance Functor (Event time) where
fmap f e = e{eventNote = f (eventNote e)}

mapTime :: (time0 -> time1) -> T time0 note -> T time1 note
mapTime f =

TimeList.mapBody
(\ev -> ev{eventDur = f (eventDur ev)}) .

TimeList.mapTime f

mapTimePadded ::
(time0 -> time1) -> Padded time0 note -> Padded time1 note

52

mapTimePadded f =
TimeListPad.mapBody

(\ev -> ev{eventDur = f (eventDur ev)}) .
TimeListPad.mapTime f

eventFromPerformanceEvent ::
(dyn -> Pitch.Relative -> note -> backEndNote) ->

Pf.Event time dyn note -> Event time backEndNote
eventFromPerformanceEvent f =

\ (Pf.Event dur vel trans note)
-> Event dur (f vel trans note)

fromPerformance ::
(dyn -> Pitch.Relative -> note -> backEndNote) ->

Pf.T time dyn note -> T time backEndNote
fromPerformance = TimeList.mapBody . eventFromPerformanceEvent

fromPaddedPerformance ::
(dyn -> Pitch.Relative -> note -> backEndNote) ->

Pf.Padded time dyn note -> Padded time backEndNote
fromPaddedPerformance = TimeListPad.mapBody . eventFromPerformanceEvent

For symmetry we also provide a function which converts a performance back to a music. This operation
is not uniquely defined, and a satisfying implementation is a music theoretical challenge. A sophisticated
algorithm would have to make assumptions about the structure of “common” music. So you will be able to
construct examples of music that fool such an algorithm.

The opposite extreme is a version which simply maps the stream of notes to a big parallel composition
where each parallel channel consists of one note. (The normal form as described in Hudak’s Temporal
Media paper.)

The following implementation tries to avoid obviously unnecessary parallelism by watching for non-
overlapping notes. Nevertheless the conversion of general polyphonic music yields a music that is not very
nicely structured. So, don’t rely on the structure of the restored music, only assume that this functions
reverts the performance generation.

toMusic :: T Music.Dur note -> Music.T note
toMusic =

TimeList.switchL
(Music.rest 0)
(\ (t0, Event d mn) es0 ->

let n = if d>=0
then Music.atom d (Just mn)
else error "Performance.toMusic: note of negative duration"

rmd =
TimeList.switchL n

(\(t1, re1) es1 ->
if t1 >= d

then n +:+ toMusic (TimeList.cons (t1-d) re1 es1)
else n =:= toMusic es0)

es0
in case compare t0 0 of

EQ -> rmd
GT -> Music.rest t0 +:+ rmd

53

LT -> error "Performance.toMusic: events in wrong order")

4.2 Midi

Midi (“musical instrument digital interface”) is a standard protocol adopted by most, if not all, manufacturers
of electronic instruments. At its core is a protocol for communicating musical events (note on, note off, key
press, etc.) as well as so-called meta events (select synthesizer patch, change volume, etc.). Beyond the
logical protocol, the Midi standard also specifies electrical signal characteristics and cabling details. In
addition, it specifies what is known as a standard Midi file which any Midi-compatible software package
should be able to recognize.

Over the years musicians and manufacturers decided that they also wanted a standard way to refer to
common or general instruments such as “acoustic grand piano”, “electric piano”, “violin”, and “acoustic
bass”, as well as more exotic ones such as “chorus aahs”, “voice oohs”, “bird tweet”, and “helicopter”. A
simple standard known as General Midi was developed to fill this role. It is nothing more than an agreed-
upon list of instrument names along with a program patch number for each, a parameter in the Midi standard
that is used to select a Midi instrument’s sound.

Most “sound-blaster”-like sound cards on conventional PC’s know about Midi, as well as General Midi.
However, the sound generated by such modules, and the sound produced from the typically-scrawny speak-
ers on most PC’s, is often quite poor. It is best to use an outboard keyboard or tone generator, which are
attached to a computer via a Midi interface and cables. It is possible to connect several Midi instruments to
the same computer, with each assigned a different channel. Modern keyboards and tone generators are quite
amazing little beasts. Not only is the sound quite good (when played on a good stereo system), but they are
also usually multi-timbral, which means they are able to generate many different sounds simultaneously, as
well as polyphonic, meaning that simultaneous instantiations of the same sound are possible.

If you decide to use the General Midi features of your sound-card, you need to know about another set
of conventions known as “General Midi”. The most important aspect of General Midi is that Channel 10 (9
in Haskore’s 0-based numbering) is dedicated to percussion.

Haskore provides a way to specify a Midi channel number and General Midi instrument selection for
each Instr in a Haskore composition. It also provides a means to generate a Standard Midi File, which
can then be played using any conventional Midi software. Finally, it provides a way for existing Midi files
to be read and converted into a MidiMusic.T object in Haskore. In this section the top-level code needed
by the user to invoke this functionality will be described, along with the gory details.

module Haskore.Interface.MIDI.Write
(fromRhythmicPerformance, fromRhythmicPerformanceMixed,
fromGMPerformance, fromGMPerformanceMixed,
fromGMPerformanceAuto, fromGMPerformanceMixedAuto,
fromRhythmicMusic, fromRhythmicMusicMixed,
fromGMMusic, fromGMMusicAuto,
fromGMMusicMixed, fromGMMusicMixedAuto,
volumeHaskoreToMIDI, volumeMIDIToHaskore)

where

import qualified Sound.MIDI.File as MidiFile
import qualified Sound.MIDI.File.Event as MidiFileEvent

54

import qualified Sound.MIDI.File.Event.Meta as MetaEvent
import qualified Sound.MIDI.Message.Channel as ChannelMsg
import qualified Sound.MIDI.Message.Channel.Voice as Voice
import qualified Haskore.Interface.MIDI.InstrumentMap as InstrMap
import qualified Haskore.Interface.MIDI.Note as MidiNote

import qualified Haskore.Music.GeneralMIDI as MidiMusic
import qualified Haskore.Music.Rhythmic as RhyMusic
import qualified Haskore.Performance as Performance
import qualified Haskore.Performance.Context as Context
import qualified Haskore.Performance.BackEnd as PerformanceBE
import qualified Haskore.Performance.Fancy as FancyPf
import qualified Data.EventList.Relative.TimeBody as TimeList
import qualified Data.EventList.Relative.MixedBody as TimeList
import qualified Data.EventList.Relative.BodyBody as BodyBodyList
import qualified Haskore.Basic.Pitch as Pitch

import qualified Numeric.NonNegative.Class as NonNeg

import qualified Haskore.General.Map as Map
import Data.Ord.HT (limit,)
import Data.Maybe (mapMaybe,)
import Control.Monad.Trans.State (state, evalState,)
import Control.Monad (liftM,)

Instead of converting a Haskore Performance.T directly into a Midi file, Haskore first converts it
into a datatype that represents a Midi file, which is then written to a file in a separate pass. This separation
of concerns makes the structure of the Midi file clearer, makes debugging easier, and provides a natural path
for extending Haskore’s functionality with direct Midi capability.

Here is the basic structure of the modules and functions:

MIDI File Stream
MidiFile

data type Performance
Music

data type

Load.fromFile

Save.toFile

Read.toMusic

Write.fromMusic

Given instrument and drum maps (Section 4.2.2), a performance is converted to a datatype representing
a Standard Midi File of type 0 (Mixed - one track containing data of all channels) or type 1 (Parallel -
tracks played simultaneously) using the from*PerformanceMixed and from*Performance func-
tions, respectively. The “Mixed” mode is the only one which can be used in principle for infinite music,
since the number of tracks is stored explicitly in the MIDI file which depends on the number of instruments
actually used in the song. Nevertheless such a stream can not be written to a pipe (not to speak of a physical
disk), since the binary MIDI file format stores lengths of tracks.

The functions with names of the form fromRhythmicPerformance* convert from generic rhyth-
mic music performances using appropriate tables. In contrast to that, for General MIDI music the instru-
ment and drum maps are fixed. There are the two variants fromGMPerformance*, which allows explicit
assignment of instruments to channels, and fromGMPerformance*Auto, which assigns the channels
automatically one by one.

type Perf time dyn drum instr =

55

Performance.T time dyn (RhyMusic.Note drum instr)

type NotePerfToBE dyn drum instr =
dyn -> Pitch.Relative ->

RhyMusic.Note drum instr -> MidiNote.T

getInstrument ::
Performance.Event time dyn (RhyMusic.Note drum instr) -> Maybe instr

getInstrument =
RhyMusic.maybeInstrument . RhyMusic.body . Performance.eventNote

fromRhythmicPerformance ::
(NonNeg.C time, RealFrac time, RealFrac dyn,
Eq drum, Eq instr) =>

InstrMap.ChannelProgramPitchTable drum ->
InstrMap.ChannelProgramTable instr ->
Perf time dyn drum instr -> MidiFile.T

fromRhythmicPerformance dMap iMap =
fromRhythmicPerformanceBase

(const (MidiNote.fromRhyNote
(InstrMap.lookup dMap) (InstrMap.lookup iMap)))

fromGMPerformance ::
(NonNeg.C time, RealFrac time, RealFrac dyn) =>
(MidiMusic.Instrument -> ChannelMsg.Channel) ->

Performance.T time dyn MidiMusic.Note -> MidiFile.T
fromGMPerformance cMap =

fromRhythmicPerformanceBase
(const (MidiNote.fromGMNote cMap))

fromGMPerformanceAuto ::
(NonNeg.C time, RealFrac time, RealFrac dyn) =>
Performance.T time dyn MidiMusic.Note -> MidiFile.T

fromGMPerformanceAuto =
fromRhythmicPerformanceBase

(\instrs -> MidiNote.fromGMNote
(InstrMap.fromInstruments instrs))

fromRhythmicPerformanceBase ::
(NonNeg.C time, RealFrac time, Eq instr) =>
([instr] -> NotePerfToBE dyn drum instr) ->

Perf time dyn drum instr -> MidiFile.T
fromRhythmicPerformanceBase makeNoteMap pf =

let splitList = TimeList.slice getInstrument pf
noteMap = makeNoteMap (mapMaybe fst splitList)
{- noteMap will always lookup instruments in a map

although the instrument will be the same for each track. -}
pfBEs = map (PerformanceBE.fromPerformance noteMap)

(map snd splitList)
in MidiFile.Cons MidiFile.Parallel (MidiFile.Ticks division)

(map trackFromPfBE pfBEs)

fromRhythmicPerformanceMixed ::
(NonNeg.C time, RealFrac time, RealFrac dyn, Eq drum, Eq instr) =>

56

InstrMap.ChannelProgramPitchTable drum ->
InstrMap.ChannelProgramTable instr ->
Perf time dyn drum instr -> MidiFile.T

fromRhythmicPerformanceMixed dMap iMap =
fromRhythmicPerformanceMixedBase

(MidiNote.fromRhyNote
(InstrMap.lookup dMap) (InstrMap.lookup iMap))

fromGMPerformanceMixed ::
(NonNeg.C time, RealFrac time, RealFrac dyn) =>
(MidiMusic.Instrument -> ChannelMsg.Channel) ->

Performance.T time dyn MidiMusic.Note -> MidiFile.T
fromGMPerformanceMixed cMap =

fromRhythmicPerformanceMixedBase (MidiNote.fromGMNote cMap)

fromGMPerformanceMixedAuto ::
(NonNeg.C time, RealFrac time, RealFrac dyn) =>
Performance.T time dyn MidiMusic.Note -> MidiFile.T

fromGMPerformanceMixedAuto pf =
let instrs = mapMaybe fst (TimeList.slice getInstrument pf)

cMap = InstrMap.fromInstruments instrs
in fromRhythmicPerformanceMixedBase

(MidiNote.fromGMNote cMap) pf

fromRhythmicPerformanceMixedBase ::
(NonNeg.C time, RealFrac time, RealFrac dyn, Eq instr) =>
NotePerfToBE dyn drum instr ->
Perf time dyn drum instr -> MidiFile.T

fromRhythmicPerformanceMixedBase noteMap pf =
MidiFile.Cons MidiFile.Mixed (MidiFile.Ticks division)

[trackFromPfBE (PerformanceBE.fromPerformance noteMap pf)]

The more comfortable function fromRhythmicMusic turns a MidiMusic.T immediately into
a MidiFile.T. Thus it needs also a Context and drum and instrument table. The signature of
fromGMMusic is chosen so that it can be used as an inverse to ReadMidi.toGMMusic. The func-
tion fromGMMusicAuto is similar but doesn’t need a InstrMap.ChannelTable because it creates
one from the set of instruments actually used in the MidiMusic.T.

fromRhythmicMusic, fromRhythmicMusicMixed ::
(NonNeg.C time, RealFrac time, RealFrac dyn,
Ord drum, Ord instr) =>
(InstrMap.ChannelProgramPitchTable drum,
InstrMap.ChannelProgramTable instr,
Context.T time dyn (RhyMusic.Note drum instr),
RhyMusic.T drum instr) -> MidiFile.T

fromGMMusic, fromGMMusicMixed ::
(NonNeg.C time, RealFrac time, RealFrac dyn) =>

(InstrMap.ChannelTable MidiMusic.Instr,
Context.T time dyn MidiMusic.Note, MidiMusic.T) -> MidiFile.T

fromGMMusicAuto, fromGMMusicMixedAuto ::
(NonNeg.C time, RealFrac time, RealFrac dyn) =>

(Context.T time dyn MidiMusic.Note, MidiMusic.T) -> MidiFile.T

57

fromRhythmicMusic (dm,im,c,m) =
fromRhythmicMusicBase (fromRhythmicPerformance dm im) c m

fromRhythmicMusicMixed (dm,im,c,m) =
fromRhythmicMusicBase (fromRhythmicPerformanceMixed dm im) c m

fromGMMusic (cm,c,m) =
fromRhythmicMusicBase (fromGMPerformance (InstrMap.lookup cm)) c m

fromGMMusicMixed (cm,c,m) =
fromRhythmicMusicBase (fromGMPerformanceMixed (InstrMap.lookup cm)) c m

fromGMMusicAuto (c,m) =
fromRhythmicMusicBase fromGMPerformanceAuto c m

fromGMMusicMixedAuto (c,m) =
fromRhythmicMusicBase fromGMPerformanceMixedAuto c m

fromRhythmicMusicBase ::
(NonNeg.C time, RealFrac time, Fractional dyn, Ord dyn,
Ord drum, Ord instr) =>

(Perf time dyn drum instr -> MidiFile.T) ->
Context.T time dyn (RhyMusic.Note drum instr) ->
RhyMusic.T drum instr -> MidiFile.T

fromRhythmicMusicBase p c m = p (Performance.fromMusic FancyPf.map c m)

General Midi specific definitions are imported from module GeneralMidi (see Section ??). The
Midi file datatype itself is imported from the module module MidiFile, functions for writing it to files
are found in the module module SaveMidi, and functions for reading MIDI files come from the modules
module LoadMidi and module ReadMidi. All these modules are described later in this section.

4.2.1 The Gory Details

Some preliminaries, otherwise known as constants:

division :: MidiFile.Tempo
division = 96 -- time-code division: 96 ticks per quarter note

When writing Type 1 Midi Files, we can associate each instrument with a separate track. So first we
partition the event list into separate lists for each instrument. (Again, due to the limited number of MIDI
channels, we can handle no more than 15 instruments.)

The crux of the conversion process is trackFromPfBE, which converts a Performance.T into a
stream of Midi.Events.

As said before, we can’t use absolute times, but the difficulties with relatively timed events are han-
dled by the module Data.EventList.Relative.TimeBody. We first convert all Performance
events to MIDI events preserving the time stamps from the Performance. In the second step we dis-
cretize the time stamps with Data.EventList.Relative.TimeBody.resample, yielding a per-
fect Midi.Track. On the one hand with this order of execution it may be that notes with equal duration
can have slightly different durations in the MIDI file. On the other hand small rests between notes or small
overlappings are avoided.6

6It would be better to define rate = 4*division, since this would map a quarter note to division ticks, as stated by the
MIDI File specification. For compensation SetTempo could be set to 250000, meaning a quarter second per quarter note, or one
second per whole note.

58

We manage a module Map which stores the active program number of each MIDI channel. If a note on
a channel needs a new program or there was no note before, a ProgChange is inserted in the stream of
MIDI events. The function updateChannelMap updates this map each time a note occurs and it returns
the MIDI channel for the note and a Maybe that contains a program change if necessary.

trackFromPfBE :: (NonNeg.C time, RealFrac time) =>
PerformanceBE.T time MidiNote.T -> MidiFile.Track

trackFromPfBE =
uncurry TimeList.cons setTempo .
TimeList.mapBody MidiFileEvent.MIDIEvent .
TimeList.resample rate .
TimeList.foldr TimeList.consTime addEvent TimeList.empty .
progChanges

setTempo :: (MidiFile.ElapsedTime, MidiFileEvent.T)
setTempo =

(0, MidiFileEvent.MetaEvent
(MetaEvent.SetTempo MetaEvent.defltTempo))

getChanProg :: MidiNote.T -> (ChannelMsg.Channel, Voice.Program)
getChanProg note = (MidiNote.channel note, MidiNote.program note)

updateChannelMap ::
(ChannelMsg.Channel, Voice.Program) ->
Map.Map ChannelMsg.Channel Voice.Program ->
(Maybe ChannelMsg.T,

Map.Map ChannelMsg.Channel Voice.Program)
updateChannelMap (midiChan, progNum) cm =

if Just progNum == Map.lookup cm midiChan
then (Nothing, cm)
else (Just (ChannelMsg.Cons midiChan (ChannelMsg.Voice

(Voice.ProgramChange progNum))),
Map.insert midiChan progNum cm)

progChanges ::
PerformanceBE.T time MidiNote.T
-> PerformanceBE.T time (MidiNote.T, Maybe ChannelMsg.T)

progChanges =
flip evalState Map.empty .
TimeList.mapBodyM

(\(PerformanceBE.Event dur note) ->
liftM (\mn -> PerformanceBE.Event dur (note, mn))

(state (updateChannelMap (getChanProg note))))

rate :: (Num a) => a
rate = 2 * fromIntegral division
-- ^ would be correctly 4 and the setTempo should be 250000

A source of incompatibility between Haskore and Midi is that Haskore represents notes with an onset
and a duration, while Midi represents them as two separate events, an note-on event and a note-off event.
Thus addEvent turns a Haskore Event into two ChannelMsg.Ts, a NoteOn and a NoteOff.

The function TimeList.insert is used to insert a NoteOff into the sequence of following MIDI
events. It looks a bit cumbersome to insert every single NoteOff. An alternative may be to merge the

59

list of NoteOn events with the list of NoteOff events. This won’t work because the second one isn’t
ordered. Instead one could merge the two-element lists defined by NoteOn and NoteOff for each note
using fold. But there might be infinitely many notes . . .

addEvent ::
(NonNeg.C time) =>
PerformanceBE.Event time

(MidiNote.T, Maybe ChannelMsg.T) ->
TimeList.T time ChannelMsg.T ->
BodyBodyList.T time ChannelMsg.T

addEvent ev mevs =
let (note, progChange)

= PerformanceBE.eventNote ev
d = PerformanceBE.eventDur ev
(mec0, mec1) = MidiNote.toMIDIEvents note

in maybe (TimeList.consBody mec0)
(\pcME ->

TimeList.consBody pcME .
TimeList.cons NonNeg.zero mec0)

progChange
(TimeList.insert d mec1 mevs)

The MIDI volume handling is still missing. One cannot express the Volume in terms of the velocity!
Thus we need some new event constructor for changed controller values.

volumeHaskoreToMIDI :: (RealFrac a, Floating a) => a -> Int
volumeHaskoreToMIDI v = round (limit (0,127) (64 + 16 * logBase 2 v))

volumeMIDIToHaskore :: Floating a => Int -> a
volumeMIDIToHaskore v = 2 ** ((fromIntegral v - 64) / 16)

4.2.2 Instrument map

module Haskore.Interface.MIDI.InstrumentMap where

import Haskore.Music.Standard(Instr)
import qualified Sound.MIDI.Message.Channel as ChannelMsg
import qualified Sound.MIDI.General as GeneralMidi

import qualified Haskore.General.Map as Map
import qualified Data.List as List
import Data.Tuple.HT (swap,)
import Data.Char (toLower,)
import Data.Maybe (fromMaybe,)

A InstrumentMap.ChannelProgramTable is a user-supplied table for mapping instrument
names (Instrs) to Midi channels and General Midi patch names. The patch names are by default General
Midi names, although the user can also provide a PatchMap for mapping Patch Names to unconventional
Midi Program Change numbers.

type ChannelTable instr =
[(instr, ChannelMsg.Channel)]

60

type ChannelProgramTable instr =
[(instr, (ChannelMsg.Channel, ChannelMsg.Program))]

type ChannelProgramPitchTable instr =
[(instr, (ChannelMsg.Channel, ChannelMsg.Program, ChannelMsg.Pitch))]

type ToChannel instr =
instr -> ChannelMsg.Channel

type ToChannelProgram instr =
instr -> (ChannelMsg.Channel, ChannelMsg.Program)

type ToChannelProgramPitch instr =
instr -> (ChannelMsg.Channel, ChannelMsg.Program, ChannelMsg.Pitch)

type FromChannel instr =
ChannelMsg.Channel -> Maybe instr

type FromChannelProgram instr =
(ChannelMsg.Channel, ChannelMsg.Program) -> Maybe instr

type FromChannelProgramPitch instr =
(ChannelMsg.Channel, ChannelMsg.Program, ChannelMsg.Pitch) -> Maybe instr

The allValid is used to test whether or not every instrument in a list is found in a
InstrumentMap.ChannelProgramTable.

repair :: [Instr] -> ChannelProgramTable Instr -> ChannelProgramTable Instr
repair insts pMap =

if allValid pMap insts
then pMap
else tableFromInstruments insts

allValid :: ChannelProgramTable Instr -> [Instr] -> Bool
allValid upm = all (\x -> any (partialMatch x . fst) upm)

If a Haskore user only uses General Midi instrument names as Instrs, we can define a function that
automatically creates a InstrumentMap.ChannelProgramTable from these names. Note that, since
there are only 15 Midi channels plus percussion, we can handle only 15 instruments. Perhaps in the future a
function could be written to test whether or not two tracks can be combined with a Program Change (tracks
can be combined if they don’t overlap).

tableFromInstruments :: [Instr] -> ChannelProgramTable Instr
tableFromInstruments instrs =

zip instrs (assignChannels GeneralMidi.instrumentChannels instrs)
-- 10th channel (#9) is for percussion

assignChannels :: [ChannelMsg.Channel] -> [Instr] ->
[(ChannelMsg.Channel, ChannelMsg.Program)]

assignChannels _ [] = []
assignChannels [] _ =

error "Too many instruments; not enough MIDI channels."
assignChannels chans@(c:cs) (i:is) =

let percList = ["percussion", "perc", "drum", "drums"]
in if map toLower i ‘elem‘ percList

then (GeneralMidi.drumChannel, GeneralMidi.drumProgram)
: assignChannels chans is

else (c, fromMaybe
(error ("unknown instrument <<" ++ i ++ ">>"))

61

(GeneralMidi.instrumentNameToProgram i))
: assignChannels cs is

fromInstruments :: Ord instr => [instr] -> ToChannel instr
fromInstruments instrs =

let fm = Map.fromList (zip instrs GeneralMidi.instrumentChannels)
in Map.findWithDefault fm (error "More instruments than channels")

The following functions lookup Instrs in InstrumentMap.ChannelProgramTables to re-
cover channel and program change numbers. Note that the function that does string matching ignores case,
and that instrument name and search pattern match if one is a prefix of the other one. For example, "chur"
matches "Church Organ". Note also that the first match succeeds, so using a substring should be done
with care to be sure that the correct instrument is selected.

partialMatch :: Instr -> Instr -> Bool
partialMatch "piano" "Acoustic Grand Piano" = True
partialMatch s1 s2 =

let s1’ = map toLower s1
s2’ = map toLower s2

in all (uncurry (==)) (zip s1’ s2’)

lookupIName :: [(Instr, a)] -> Instr -> a
lookupIName ys x =

maybe (error ("InstrumentMap.lookupIName: Instrument " ++ x ++ " unknown"))
snd (List.find (partialMatch x . fst) ys)

lookup :: Eq instr => [(instr, a)] -> instr -> a
lookup ys x =

fromMaybe (error ("InstrumentMap.lookup: Instrument unknown"))
(List.lookup x ys)

reverseLookupMaybe :: Eq a => [(instr, a)] -> a -> Maybe instr
reverseLookupMaybe ys x =

List.lookup x (map swap ys)

reverseLookup :: Eq a => [(instr, a)] -> a -> instr
reverseLookup ys x =

let instr = reverseLookupMaybe ys x
err = error "InstrumentMap.reverseLookup: channel+program not found"

in fromMaybe err instr

A default InstrumentMap.ChannelProgramTable. Note: the PC sound card I’m using is lim-
ited to 9 instruments.

defltTable :: [(Instr, ChannelMsg.Channel, GeneralMidi.Instrument)]
defltTable =

map (\(instr,chan,gmInstr) -> (instr, ChannelMsg.toChannel chan, gmInstr))
[("piano", 1, GeneralMidi.AcousticGrandPiano),
("vibes", 2, GeneralMidi.Vibraphone),
("bass", 3, GeneralMidi.AcousticBass),
("flute", 4, GeneralMidi.Flute),
("sax", 5, GeneralMidi.TenorSax),
("guitar", 6, GeneralMidi.AcousticGuitarSteel),

62

("violin", 7, GeneralMidi.Viola),
("violins", 8, GeneralMidi.StringEnsemble1),
("drums", 9, GeneralMidi.AcousticGrandPiano)]
-- the GM name for drums is unimportant, only channel 9

deflt :: ChannelProgramTable Instr
deflt =

map (\(iName, chan, gmName) ->
(iName, (chan, GeneralMidi.instrumentToProgram gmName))) defltTable

defltGM :: ChannelProgramTable GeneralMidi.Instrument
defltGM =

map (\(_, chan, gmName) ->
(gmName, (chan, GeneralMidi.instrumentToProgram gmName))) defltTable

defltCMap :: [(GeneralMidi.Instrument, ChannelMsg.Channel)]
defltCMap =

map (\(_, chan, gmName) -> (gmName, chan)) defltTable

For a description of the MIDI file type and its loading and saving to disk, see the midi package.

4.2.3 Reading Midi files

Now that we have translated a raw Midi file into a MidiFile.T data type, we can translate that
MidiFile.T into a MidiMusic.T object.

module Haskore.Interface.MIDI.Read (toRhyMusic, toGMMusic,
{- debugging -} retrieveTracks)
where

import qualified Haskore.Interface.MIDI.Note as MidiNote
import qualified Haskore.Interface.MIDI.InstrumentMap as InstrMap
import Sound.MIDI.File as MidiFile
import qualified Sound.MIDI.File.Event as MidiFileEvent
import qualified Sound.MIDI.Message.Channel as ChannelMsg
import qualified Sound.MIDI.Message.Channel.Voice as Voice
import qualified Sound.MIDI.General as GeneralMidi
import Sound.MIDI.File.Event (T(MIDIEvent, MetaEvent),)
import Sound.MIDI.File.Event.Meta (T(SetTempo), defltTempo,)
import Sound.MIDI.Message.Channel (Body(Voice), Channel,)
import Sound.MIDI.Message.Channel.Voice (Program,)

import Haskore.Basic.Duration ((%+))
import qualified Data.EventList.Relative.TimeBody as TimeList
import qualified Data.EventList.Relative.MixedBody as TimeList
import qualified Haskore.Music as Music
import qualified Haskore.Music.GeneralMIDI as MidiMusic
import qualified Haskore.Music.Rhythmic as RhyMusic
import qualified Haskore.Performance.Context as Context
import qualified Haskore.Performance.BackEnd as PfBE
import qualified Haskore.Performance.Default as DefltPf
import qualified Haskore.Process.Optimization as Optimization

import qualified Numeric.NonNegative.Class as NonNeg

63

import Haskore.Music
(line, chord, changeTempo, Dur, DurRatio)

import Data.Tuple.HT (mapPair, mapSnd,)
import qualified Data.List.HT as ListHT

import Haskore.General.Map (Map)
import qualified Haskore.General.Map as Map
import Data.Maybe (mapMaybe, fromMaybe)

The main function. Note that we need drum and instrument maps in order to restore a Context.T as
well as a RhyMusic.T object.

toRhyMusic ::
(NonNeg.C time, Fractional time, Real time, Fractional dyn) =>
InstrMap.ChannelProgramPitchTable drum ->
InstrMap.ChannelProgramTable instr ->
MidiFile.T ->

(Context.T time dyn (RhyMusic.Note drum instr), RhyMusic.T drum instr)
toRhyMusic dMap iMap mf@(MidiFile.Cons _ d trks) =

let cpm = makeCPM trks
m = Music.mapNote

(MidiNote.toRhyNote
(InstrMap.reverseLookupMaybe dMap)
(InstrMap.reverseLookupMaybe iMap))

(format (readFullTrack d cpm) (MidiFile.explicitNoteOff mf))
in (context, m)

toGMMusic ::
(NonNeg.C time, Fractional time, Real time, Fractional dyn) =>
MidiFile.T -> (InstrMap.ChannelTable MidiMusic.Instr,

Context.T time dyn MidiMusic.Note, MidiMusic.T)
toGMMusic mf@(MidiFile.Cons _ d trks) =

let cpm = makeCPM trks
upm = map (\(ch, progNum) ->

(GeneralMidi.instrumentFromProgram progNum, ch))
(Map.toList cpm)

m = Music.mapNote MidiNote.toGMNote
(format (readFullTrack d cpm)

(MidiFile.explicitNoteOff mf))
in (upm, context, m)

context ::
(NonNeg.C time, Fractional time, Real time, Fractional dyn) =>
Context.T time dyn note

context =
Context.setPlayer DefltPf.player $
Context.setDur 2 $
DefltPf.context

retrieveTracks :: MidiFile.T -> [[MidiMusic.T]]
retrieveTracks (MidiFile.Cons _ d trks) =

let cpm = makeCPM trks
in map (map (Music.mapNote MidiNote.toGMNote

. readTrack (MidiFile.ticksPerQuarterNote d) cpm . fst)

64

. prepareTrack) trks

type ChannelProgramMap = Map ChannelMsg.Channel Voice.Program

readFullTrack ::
Division -> ChannelProgramMap -> Track -> Music.T MidiNote.T

readFullTrack dv cpm =
let readTempoTrack (t,r) =

changeTempo r (readTrack (MidiFile.ticksPerQuarterNote dv) cpm t)
in Optimization.all . line . map readTempoTrack . prepareTrack

prepareTrack :: Track -> [(RichTrack, DurRatio)]
prepareTrack =

map (extractTempo defltTempo) . segmentBeforeSetTempo .
mergeNotes defltTempo . moveTempoToHead

Make one big music out of the individual tracks of a MidiFile, using different composition types de-
pending on the format of the MidiFile.

format :: (Track -> Music.T note) -> MidiFile.T -> Music.T note
format tm (MidiFile.Cons typ _ trks) =

let trks’ = map tm trks
in case typ of

MidiFile.Mixed ->
case trks’ of

[trk] -> trk
_ -> error ("toRhyMusic: Only one track allowed for MIDI file type 0.")

MidiFile.Parallel -> chord trks’
MidiFile.Serial -> line trks’

Look for Program Changes in the given tracks, in order to make a ChannelProgramMap.

makeCPM :: [Track] -> ChannelProgramMap
makeCPM =

Map.fromList . concatMap (mapMaybe getPC . TimeList.getBodies)

getPC :: MidiFileEvent.T -> Maybe (Channel, Program)
getPC ev =

do (ch, Voice.ProgramChange num) <- MidiFileEvent.maybeVoice ev
Just (ch, num)

moveTempoToHead gets the information that occurs at the beginning of the piece: the default tempo
and the default key signature. A SetTempo in the middle of the piece should translate to a tempo change
(Tempo r m), but a SetTempo at time 0 should set the default tempo for the entire piece, by translating
to Context.T tempo. It remains a matter of taste which tempo of several parallel tracks to use for the
whole music. moveTempoToHead takes care of all events that occur at time 0 so that if any SetTempo
appears at time 0, it is moved to the front of the list, so that it can be easily retrieved from the result of
segmentBeforeSetTempo.

moveTempoToHead :: Track -> Track
moveTempoToHead es =

let (tempo, track) = getHeadTempo es
in TimeList.cons 0 (MetaEvent (SetTempo tempo)) track

65

getHeadTempo :: Track -> (Tempo, Track)
getHeadTempo es =

maybe
(defltTempo, es)
(\ ~(me,rest) ->

case me of
MetaEvent (SetTempo tempo) -> (tempo, rest)
_ -> mapSnd (TimeList.cons 0 me) (getHeadTempo rest))

(do ((0,me),rest) <- TimeList.viewL es
return (me,rest))

Manages the tempo changes in the piece. It translates each MidiFile SetTempo into a ratio between
the new tempo and the tempo at the beginning.

extractTempo :: Tempo -> RichTrack -> (RichTrack, DurRatio)
extractTempo d trk =

fromMaybe
(trk, 1)
(do ((_, Event (MetaEvent (SetTempo tempo))), rest) <- TimeList.viewL trk

return (rest, toInteger d %+ toInteger tempo))

segmentBefore is used to split a track into sub-tracks by tempo. We do not want to add this function
to the event-list package, because the precise type would be AlternatingList.Disparate
(TimeList.T time body) (TimeList.Event time body) and that’s inconvenient for our
application.

segmentBefore ::
(body -> Bool) -> TimeList.T time body -> [TimeList.T time body]

segmentBefore p =
map TimeList.fromPairList .
ListHT.segmentBefore (p . snd) .
TimeList.toPairList

isSetTempo :: RichEvent -> Bool
isSetTempo (Event (MetaEvent (SetTempo _))) = True
isSetTempo _ = False

segmentBeforeSetTempo :: RichTrack -> [RichTrack]
segmentBeforeSetTempo = segmentBefore isSetTempo

readTrack is the heart of the toRhyMusic operation. It reads a track that has been processed
by mergeNotes, and returns the track as StdMusic.T. A RichEvent consists either of a normal
MIDIEvent or of a note, which in contrast to normal MIDIEvents contains the information of corre-
sponding NoteOn and NoteOff events.

type RichTrack = TimeList.T ElapsedTime RichEvent
data RichEvent =

Event MidiFileEvent.T
| Note ElapsedTime MidiNote.T

readTrack :: Tempo -> ChannelProgramMap ->
RichTrack -> Music.T MidiNote.T

66

readTrack ticksPerQN cpm =
PfBE.toMusic . trackTimeToStd ticksPerQN
. richTrackToBE . applyProgChanges cpm

Take the division in ticks per quarterNote and a duration value in number of ticks and converts that to a
common note duration (such as quarter note, eighth note, etc.).

fromTicks :: Tempo -> ElapsedTime -> Dur
fromTicks ticksPerQN d =

toInteger d %+ (toInteger ticksPerQN * quarter)

quarter :: Integer
quarter = 4

trackTimeToStd :: Tempo ->
PfBE.T ElapsedTime note -> PfBE.T Dur note

trackTimeToStd ticksPerQN =
TimeList.mapBody

(\(PfBE.Event d n) -> PfBE.Event (fromTicks ticksPerQN d) n)
. TimeList.mapTime (fromTicks ticksPerQN)

Look up an instrument name from a ChannelProgramMap given its channel number.

lookupChannelProg :: ChannelProgramMap -> Channel -> Program
lookupChannelProg cpm =

Map.findWithDefault cpm
(error "Invalid channel in user patch map")

Implement a Program Change: a change in the ChannelProgramMap in which a channel changes
from one instrument to another.

progChange :: Channel -> Program -> ChannelProgramMap -> ChannelProgramMap
progChange = Map.insert
-- progChange ch num cpm = Map.insert ch num cpm

Process all ProgramChange events in a track. That is, manage a patch map and insert in the appro-
priate program numbers into the MidiNote.Ts.

The function works the following way: Split the track into pieces, each beginning with a program
change. Compute the patch maps that are active after each program change. Apply these patch maps to the
track parts.

isProgChange :: RichEvent -> Bool
isProgChange (Event ev) =

maybe False (const True) (getPC ev)
isProgChange _ = False

applyProgChanges :: ChannelProgramMap -> RichTrack -> RichTrack
applyProgChanges cpm track =

let parts@(_:pcParts) = segmentBefore isProgChange track
{-

updateCPM (Event (MIDIEvent ch (ProgramChange prog))) =
progChange ch prog

updateCPM _ = error "TimeList.collectCoincident is buggy"

67

-}
updateCPM =

TimeList.switchL
(error "TimeList.collectCoincident is buggy")
(\ (_, Event ev) _ ->

maybe
(error "after segmentation, each part should start with ProgramChange event")
(uncurry progChange)
(getPC ev))

cpms =
scanl (flip id) cpm (map updateCPM pcParts)

setProg localCPM (Note d n) =
Note d (n{MidiNote.program =

lookupChannelProg localCPM (MidiNote.channel n)})
setProg _ e = e

in TimeList.concat (zipWith (TimeList.mapBody . setProg) cpms parts)

Remove meta events from RichTrack, thus converting to a back-end performance.

richNoteToBE :: RichEvent -> PfBE.Event ElapsedTime MidiNote.T
richNoteToBE (Note d n) = PfBE.Event d n
richNoteToBE _ = error "richNoteToBE: only Note constructor allowed"

isRichNote :: RichEvent -> Bool
isRichNote (Note _ _) = True
isRichNote _ = False

richTrackToBE :: RichTrack -> PfBE.T ElapsedTime MidiNote.T
richTrackToBE =

TimeList.mapBody richNoteToBE . fst
. TimeList.partition isRichNote

The mergeNotes function changes the order of the events in a track so that they can be handled by
readTrack: each NoteOff is put directly after its corresponding NoteOn. Its first and second arguments
are the elapsed time and value (in microseconds per quarter note) of the SetTempo currently in effect.

mergeNotes :: Tempo -> Track -> RichTrack
mergeNotes stv =

TimeList.mapTimeTail
(TimeList.switchBodyL $ \ e rest ->

uncurry TimeList.consBody $
let deflt = (Event e, mergeNotes stv rest)
in case e of

MetaEvent (SetTempo newStv) ->
(Event e, mergeNotes newStv rest)

MIDIEvent chmsg@(ChannelMsg.Cons _ (Voice msg)) ->
if Voice.isNoteOn msg
then mapPair

(uncurry Note, mergeNotes stv)
(searchNoteOff 0 stv 1 chmsg rest)

else
if Voice.isNoteOff msg

then error "NoteOff before NoteOn"
else deflt

_ -> deflt)

68

The function searchNoteOff takes a track and looks through the list of events to find the NoteOff
corresponding to the given NoteOn. A NoteOff corresponds to an earlier NoteOn if it is the first in the
track to have the same channel and pitch. If between NoteOn and NoteOff are SetTempo events, it
calculates what the elapsed-time is, expressed in the current tempo. This function takes a ridiculous number
of arguments, I know, but I don’t think it can do without any of the information. Maybe there is a simpler
way.

searchNoteOff ::
Double {- ^ time interval between NoteOn and now,

in terms of the tempo at the NoteOn -}
-> Tempo -> Double {- ^ SetTempo values: the one at the NoteOn and

the ratio between the current tempo and the first one. -}
-> ChannelMsg.T {- ^ channel and pitch of NoteOn (NoteOff must match) -}
-> Track {- ^ the track to be searched -}
-> ((ElapsedTime, MidiNote.T), Track)

-- ^ the needed event and the remainder of the track

searchNoteOff int ost str chm0 =
TimeList.switchL

(error "ReadMidi.searchNoteOff: no corresponding NoteOff")
(\(t1, mev1) es ->

maybe
-- if MIDI events don’t match, then recourse
(mapSnd (TimeList.cons t1 mev1) $
searchNoteOff (addInterval str t1 int) ost

(case mev1 of
-- respect tempo changes
MetaEvent (SetTempo nst) ->

fromIntegral ost / fromIntegral nst
_ -> str)

chm0 es)
-- if MIDI events match, construct a MidiNote.T
(\note ->

let d = round (addInterval str t1 int)
in ((d, note), TimeList.delay t1 es))

-- check whether NoteOn and NoteOff matches
(do chm1 <- MidiFileEvent.maybeMIDIEvent mev1

MidiNote.fromMIDIEvents (chm0, chm1)))

addInterval :: Double -> ElapsedTime -> Double -> Double
addInterval str t int = int + fromIntegral t * str

4.3 CSound

module Haskore.Interface.CSound where

[Note: if this module is loaded into Hugs98, the following error message may result:

ERROR "CSound.lhs" (line 707):

*** Cannot derive Eq OrcExp after 40 iterations.

*** This may indicate that the problem is undecidable. However,

*** you may still try to increase the cutoff limit using the -c

69

*** option and then try again. (The current setting is -c40)

This is apparently due to the size of the OrcExp data type. For correct operation, start Hugs with a larger
cutoff limit, such as -c1000.]

CSound is a software synthesizer that allows its user to create a virtually unlimited number of sounds and
instruments. It is extremely portable because it is written entirely in C. Its strength lies mainly in the fact that
all computations are performed in software, so it is not reliant on sophisticated musical hardware. The output
of a CSound computation is a file representing the signal which can be played by an independent application,
so there is no hard upper limit on computation time. This is important because many sophisticated signals
take much longer to compute than to play. The purpose of this module is to create an interface between
Haskore and CSound in order to give the Haskore user access to all the powerful features of a software
sound synthesizer.

CSound takes as input two plain text files: a score (.sco) file and an orchestra (.orc) file. The score
file is similar to a Midi file, and the orchestra file defines one or more instruments that are referenced from
the score file (the orchestra file can thus be thought of as the software equivalent of Midi hardware). The
CSound program takes these two files as input, and produces a sound file as output, usually in .wav format.
Sound files are generally much larger than Midi files, since they describe the actual sound to be generated,
represented as a sequence of values (typically 44,100 of them for each second of music), which are converted
directly into voltages that drive the audio speakers. Sound files can be played by any standard media player
found on conventional PC’s.

Each of these files is described in detail in the following sections.

Here are some common definitions:

newtype Instrument = Instrument Int
deriving (Show, Eq)

instrument :: Int -> Instrument
instrument = Instrument

instruments :: [Instrument]
instruments = map instrument [1..]

instrumentToNumber :: Instrument -> Int
instrumentToNumber (Instrument n) = n

showInstrumentNumber :: Instrument -> String
showInstrumentNumber = show . instrumentToNumber

type Name = String

type Velocity = Float
type PField = Float
type Time = Float

4.3.1 The Score File

70

module Haskore.Interface.CSound.Score where

import Haskore.Interface.CSound (Instrument, showInstrumentNumber, PField, Time)
import qualified Haskore.Interface.CSound.Note as CSNote
import qualified Haskore.Interface.CSound.Generator as Generator
import Haskore.Interface.CSound.Generator

(compSine1, lineSeg1, randomTable, PStrength, RandDist(Uniform))

import qualified Haskore.Music.Rhythmic as RhyMusic
import qualified Haskore.Performance as Performance
import qualified Haskore.Performance.BackEnd as PerformanceBE
import qualified Haskore.Performance.Context as Context
import qualified Haskore.Performance.Fancy as FancyPf
import qualified Data.EventList.Relative.TimeBody as TimeList
import qualified Data.EventList.Absolute.TimeBody as TimeListAbs
import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Interface.CSound.InstrumentMap as InstrMap
import qualified Haskore.Interface.CSound.SoundMap as SoundMap

import qualified Numeric.NonNegative.Class as NonNeg

We will represent a score file as a sequence of score statements:

type T = [Statement]

The Statement data type is designed to simulate CSound’s three kinds of score statements:

1. A tempo statement, which sets the tempo. In the absence of a tempo statement, the tempo defaults to
60 beats per minute.

2. A note event, which defines the start time, pitch, duration (in beats), volume (in decibels), and in-
strument to play a note (and is thus more like a Haskore Event than a Midi event, thus making the
conversion to CSound easier than to Midi, as we shall see later). Each note event also contains a num-
ber of optional arguments called p-fields, which determine other properties of the note, and whose
interpretation depends on the instrument that plays the note. This will be discussed further in a later
section.

3. Function table definitions. A function table is used by instruments to produce audio signals. For
example, sequencing through a table containing a perfect sine wave will produce a very pure tone,
while a table containing an elaborate polynomial will produce a complex sound with many overtones.
The tables can also be used to produce control signals that modify other signals. Perhaps the simplest
example of this is a tremolo or vibrato effect, but more complex sound effects, and FM (frequency
modulation) synthesis in general, is possible.

data Statement = Tempo Bpm
| Note Instrument StartTime Duration Pch Volume [PField]
| Table Table CreatTime TableSize Normalize Generator.T

deriving Show

type Bpm = Int

71

type StartTime = Time
type Duration = Time
data Pch = AbsPch Pitch.Absolute | Cps Float deriving Show
type Volume = Float
type Table = Int
type CreatTime = Time
type TableSize = Int
type Normalize = Bool

This is all rather straightforward, except for function table generation, which requires further explana-
tion.

Function Tables Each function table must have a unique integer ID (Table), creation time (usually
0), size (which must be a power of 2), and a Normalize flag. Most tables in CSound are normalized,
i.e. rescaled to a maximum absolute value of 1. The normalization process can be skipped by setting the
Normalize flag to False. Such a table may be desirable to generate a control or modifying signal, but
is not very useful for audio signal generation.

Tables are simply arrays of floating point values. The values stored in the table are calculated by one of
CSound’s predefined generating routines, represented by the type Generator.T:

module Haskore.Interface.CSound.Generator where

import Haskore.Interface.CSound (Time)
import Haskore.General.Utility

(flattenTuples2, flattenTuples3, flattenTuples4)

data T = Routine Number [Parameter]
| SoundFile SFName SkipTime ChanNum

deriving Show

type SFName = String
type SkipTime = Time
type ChanNum = Float
type Number = Int
type Parameter = Float

Routine n args refers to CSound’s generating routine n (an integer), called with floating point ar-
guments args. There is only one generating routine (called GEN01) in CSound that takes an argument
type other than floating point, and thus we represent this using the special constructor SoundFile, whose
functionality will be described shortly.

Knowing which of CSound’s generating routines to use and with what arguments can be a daunting
task. The newest version of CSound (version 4.01) provides 23 different generating routines, and each one
of them assigns special meanings to its arguments. To avoid having to reference routines using integer ids,
the following functions are defined for the most often-used generating routines. A brief discussion of each
routine is also included. For a full description of these and other routines, refer to the CSound manual or
consult the following webpage: http://www.leeds.ac.uk/music/Man/Csound/Function/
GENS.html. The user familiar with CSound is free to write helper functions like the ones below to capture
other generating routines.

72

http://www.leeds.ac.uk/music/Man/Csound/Function/GENS.html
http://www.leeds.ac.uk/music/Man/Csound/Function/GENS.html

GEN01. Transfers data from a soundfile into a function table. Recall that the size of the function table
in CSound must be a power of two. If the soundfile is larger than the table size, reading stops when the table
is full; if it is smaller, then the table is padded with zeros. One exception is allowed: if the file is of type
AIFF and the table size is set to zero, the size of the function table is allocated dynamically as the number
of points in the soundfile. The table is then unusable by normal oscillators, but can be used by a special
SampOsc constructor (discussed in Section 4.3.2). The first argument passed to the GEN01 subroutine is
a string containing the name of the source file. The second argument is skip time, which is the number
of seconds into the file that the reading begins. Finally there is an argument for the channel number, with
0 meaning read all channels. GEN01 is represented in Haskore as SoundFile SFName SkipTime
ChanNum, as discussed earlier. To make the use of SoundFile consistent with the use of other functions
to be described shortly, we define a simple equivalent:

soundFile :: SFName -> SkipTime -> ChanNum -> T
soundFile = SoundFile

GEN02. Transfers data from its argument fields directly into the function table. We represent its
functionality as follows:

tableValues :: [Parameter] -> T
tableValues gas = Routine 2 gas

GEN03. Fills the table by evaluating a polynomial over a specified interval and with given coefficients.
For example, calling GEN03 with an interval of (−1, 1) and coefficients 5, 4, 3, 2, 0, 1 will generate values
of the function 5+ 4x+3x2 +2x3 + x5 over the interval −1 to 1. The number of values generated is equal
to the size of the table. Let’s express this by the following function:

polynomial :: Interval -> Coefficients -> T
polynomial (x1,x2) cfs = Routine 3 (x1:x2:cfs)

type Interval = (Float, Float)
type Coefficients = [Float]

GEN05. Constructs a table from segments of exponential curves. The first argument is the starting
point. The meaning of the subsequent arguments alternates between the length of a segment in samples, and
the endpoint of the segment. The endpoint of one segment is the starting point of the next. The sum of all
the segment lengths normally equals the size of the table: if it is less the table is padded with zeros, if it is
more, only the first TableSize locations will be stored in the table.

exponential1 :: StartPt -> [(SegLength, EndPt)] -> T
exponential1 sp xs = Routine 5 (sp : flattenTuples2 xs)

type StartPt = Float
type SegLength = Float
type EndPt = Float

73

GEN25. Similar to GEN05 in that it produces segments of exponential curves, but instead of repre-
senting the lengths of segments and their endpoints, its arguments represent (x, y) coordinates in the table,
and the subroutine produces curves between successive locations. The x-coordinates must be in increasing
order.

exponential2 :: [Point] -> T
exponential2 pts = Routine 25 (flattenTuples2 pts)

type Point = (Float,Float)

GEN06. Generates a table from segments of cubic polynomial functions, spanning three points at a
time. We define a function cubic with two arguments: a starting position and a list of segment length (in
number of samples) and segment endpoint pairs. The endpoint of one segment is the starting point of the
next. The meaning of the segment endpoint alternates between a local minimum/maximum and point of
inflexion. Whether a point is a maximum or a minimum is determined by its relation to the next point of
inflexion. Also note that for two successive minima or maxima, the inflexion points will be jagged, whereas
for alternating maxima and minima, they will be smooth. The slope of the two segments is independent
at the point of inflection and will likely vary. The starting point is a local minimum or maximum (if the
following point is greater than the starting point, then the starting point is a minimum, otherwise it is a
maximum). The first pair of numbers will in essence indicate the position of the first inflexion point in
(x, y) coordinates. The folowing pair will determine the next local minimum/maximum, followed by the
second point of inflexion, etc.

cubic :: StartPt -> [(SegLength, EndPt)] -> T
cubic sp pts = Routine 6 (sp : flattenTuples2 pts)

GEN07. Similar to GEN05, except that it generates straight lines instead of exponential curve seg-
ments. All other issues discussed about GEN05 also apply to GEN07. We represent it as:

lineSeg1 :: StartPt -> [(SegLength, EndPt)] -> T
lineSeg1 sp pts = Routine 7 (sp : flattenTuples2 pts)

GEN27. As with GEN05 and GEN25, produces straight line segments between points whose locations
are given as (x, y) coordinates, rather than a list of segment length, endpoint pairs.

lineSeg2 :: [Point] -> T
lineSeg2 pts = Routine 27 (flattenTuples2 pts)

GEN08. Produces a smooth piecewise cubic spline curve through the specified points. Neighboring
segments have the same slope at the common points, and it is that of a parabola through that point and its
two neighbors. The slope is zero at the ends.

cubicSpline :: StartPt -> [(SegLength, EndPt)] -> T
cubicSpline sp pts = Routine 8 (sp : flattenTuples2 pts)

74

GEN10. Produces a composite sinusoid. It takes a list of relative strengths of harmonic partials 1, 2,
3, etc. Partials not required should be given strength of zero.

compSine1 :: [PStrength] -> T
compSine1 pss = Routine 10 pss

type PStrength = Float

GEN09. Also produces a composite sinusoid, but requires three arguments to specify each contributing
partial. The arguments specify the partial number, which doesn’t have to be an integer (i.e. inharmonic
partials are allowed), the relative partial strength, and the initial phase offset of each partial, expressed in
degrees.

compSine2 :: [(PNum, PStrength, PhaseOffset)] -> T
compSine2 args = Routine 9 (flattenTuples3 args)

type PNum = Float
type PhaseOffset = Float

GEN19. Provides all of the functionality of GEN09, but in addition a DC offset must be specified for
each partial. The DC offset is a vertical displacement, so that a value of 2 will lift a 2-strength partial from
range [−2, 2] to range [0, 4] before further scaling.

compSine3 :: [(PNum, PStrength, PhaseOffset, DCOffset)] -> T
compSine3 args = Routine 19 (flattenTuples4 args)

type DCOffset = Float

GEN11. Produces an additive set of harmonic cosine partials, similar to GEN10. We will represent it
by a function that takes three arguments: the number of harmonics present, the lowest harmonic present, and
a multiplier in an exponential series of harmonics amplitudes (if the x’th harmonic has strength coefficient
of A, then the (x+ n)’th harmonic will have a strength of A ∗ (rn), where r is the multiplier).

cosineHarms :: NHarms -> LowestHarm -> Mult -> T
cosineHarms n l m = Routine 11 [fromIntegral n, fromIntegral l, m]

type NHarms = Int
type LowestHarm = Int
type Mult = Float

GEN21. Produces tables having selected random distributions.

randomTable :: RandDist -> T
randomTable rd = Routine 21 [fromIntegral (fromEnum rd + 1)]

data RandDist =
Uniform

75

| Linear
| Triangular
| Expon
| BiExpon
| Gaussian
| Cauchy
| PosCauchy

deriving (Eq, Ord, Enum, Show)

toStatementWords :: T -> [String]
toStatementWords (Routine gn gas) = show gn : map show gas
toStatementWords (SoundFile nm st cn) = ["1", nm, show st, "0", show cn]

Common Tables For convenience, here are some common function tables, which take as argument
the identifier integer:

simpleSine, square, sawtooth, triangle, whiteNoise :: Table -> Statement

simpleSine n = Table n 0 8192 True
(compSine1 [1])

square n = Table n 0 1024 True
(lineSeg1 1 [(256, 1), (0, -1), (512, -1), (0, 1), (256, 1)])

sawtooth n = Table n 0 1024 True
(lineSeg1 0 [(512, 1), (0, -1), (512, 0)])

triangle n = Table n 0 1024 True
(lineSeg1 0 [(256, 1), (512, -1), (256, 0)])

whiteNoise n = Table n 0 1024 True
(randomTable Uniform)

The following function for a composite sine has an extra argument, a list of harmonic partial strengths:

compSine :: Table -> [PStrength] -> Statement
compSine _ s = Table 6 0 8192 True (compSine1 s)

Naming Instruments and Tables In CSound, each table and instrument has a unique identifying integer
associated with it. Haskore, on the other hand, uses strings to name instruments. What we need is a way to
convert Haskore instrument names to identifier integers that CSound can use. Similar to Haskore’s player
maps, we define a notion of a CSound name map for this purpose.

module Haskore.Interface.CSound.InstrumentMap where

import Haskore.Interface.CSound (PField, Instrument, instruments)

import qualified Data.List as List

type SoundTable instr = [(instr, Instrument)]

A name map can be provided directly in the form [("name1", int1), ("name2", int2),
...], or the programmer can define auxiliary functions to make map construction easier. For example:

76

tableFromInstruments :: [instr] -> SoundTable instr
tableFromInstruments nms = zip nms $ instruments

The following function will add a name to an existing name map. If the name is already in the map, an error
results.

addToTable :: (Eq instr) =>
instr -> Instrument -> SoundTable instr -> SoundTable instr

addToTable nm i instrMap =
if elem nm (map fst instrMap)
then ((nm,i) : instrMap)
else (error ("CSound.addToTable: instrument already in the map"))

Note the use of the function lookup imported from module List.

type ToSound instr = instr -> ([PField], Instrument)

lookup :: (Eq instr) => SoundTable instr -> ToSound instr
lookup table instr =

maybe (error "CSound.InstrMap.lookup: instrument not found")
((,) [])
(List.lookup instr table)

Converting Haskore Music.T to a CSound Score File To convert a Music.T value into a CSound score
file, we need to:

1. Convert the Music.T value to a Performance.T.

2. Convert the Performance.T value to a Score.T.

3. Write the Score.T value to a CSound score file.

We already know how to do the first step. Steps two and three will be achieved by the following two
functions:

fromPerformanceBE :: (NonNeg.C time, Num time) =>
(time -> Time) ->
PerformanceBE.T time CSNote.T -> T

saveIA :: T -> IO ()

The three steps can be put together in whatever way the user wishes, but the most general way would be
this:

fromRhythmicMusic ::
(RealFrac time, NonNeg.C time, RealFrac dyn, Ord drum, Ord instr) =>

Tables ->
(InstrMap.SoundTable drum,
InstrMap.SoundTable instr,
Context.T time dyn (RhyMusic.Note drum instr),

77

RhyMusic.T drum instr) -> T
fromRhythmicMusic tables (dMap, iMap, cont, m) =

tables ++ fromRhythmicPerformance dMap iMap
(Performance.fromMusic FancyPf.map cont m)

type Tables = T

The Tables argument is a user-defined set of function tables, represented as a sequence of Statements
(specifically, Table constructors). (See Section 4.3.1.)

From Performance.T to Score.T The translation between Performance.Events and score
CSoundScore.Notes is straightforward, the only tricky part being:

• The unit of time in a Performance.T is the second, whereas in a Score.T it is the beat. However,
the default CSound tempo is 60 beats per minute, or one beat per second, as was already mentioned,
and we use this default for our score files. Thus the two are equivalent, and no translation is necessary.

• CSound wants to get pitch information in the form ’a.b’ but it interprets them very different. Some-
times it is considered as ’octave.pitchclass’ sometimes it is considered as fraction frequency. We try
to cope with it using the two-constructor type Pch.

• Like for MIDI data we must distinguish between Velocity and Volume. Velocity is instrument depen-
dent and different velocities might result in different flavors of a sound. As a quick work-around we
turn the velocity information into volume. Cf. dbamp in the CSound manual.

fromPerformanceBE timeMap =
map (\(time, event) ->

noteToStatement timeMap time
(PerformanceBE.eventDur event)
(PerformanceBE.eventNote event)) .

TimeListAbs.toPairList .
TimeList.toAbsoluteEventList NonNeg.zero

fromRhythmicPerformance ::
(RealFrac time, NonNeg.C time, RealFrac dyn, Ord drum, Ord instr) =>
InstrMap.SoundTable drum ->
InstrMap.SoundTable instr ->

Performance.T time dyn (RhyMusic.Note drum instr) -> T
fromRhythmicPerformance dMap iMap =

fromPerformanceBE realToFrac .
PerformanceBE.fromPerformance

(CSNote.fromRhyNote
(InstrMap.lookup dMap)
(InstrMap.lookup iMap))

fromRhythmicPerformanceMap ::
(RealFrac time, NonNeg.C time, RealFrac dyn) =>
InstrMap.ToSound drum ->
InstrMap.ToSound instr ->

Performance.T time dyn (RhyMusic.Note drum instr) -> T
fromRhythmicPerformanceMap dMap iMap =

78

fromPerformanceBE realToFrac .
PerformanceBE.fromPerformance (CSNote.fromRhyNote dMap iMap)

fromRhythmicPerformanceWithAttributes ::
(RealFrac time, NonNeg.C time, RealFrac dyn) =>
SoundMap.DrumTableWithAttributes out drum ->
SoundMap.InstrumentTableWithAttributes out instr ->

Performance.T time dyn (RhyMusic.Note drum instr) -> T
fromRhythmicPerformanceWithAttributes dMap iMap =

fromRhythmicPerformanceMap
(SoundMap.lookupDrum dMap)
(SoundMap.lookupInstrument iMap)

noteToStatement ::
(time -> Time) -> time -> time ->

CSNote.T -> Statement
noteToStatement timeMap t d (CSNote.Cons pfs v i p) =

Note i (timeMap t) (timeMap d)
(maybe (Cps 0 {- dummy -}) AbsPch p) v pfs

From Score to Score File Now that we have a value of type Score, we must write it into a plain
text ASCII file with an extension .sco in a way that CSound will recognize. This is done by the following
function:

saveIA s =
do putStr "\nName your score file "

putStr "(.sco extension will be added): "
name <- getLine
save (name ++ ".sco") s

save :: FilePath -> T -> IO ()
save name s = writeFile (name ++ ".sco") (toString s)

This function asks the user for the name of the score file, opens that file for writing, writes the score into the
file using the function toString, and then closes the file.

The score file is a plain text file containing one statement per line. Each statement consists of an opcode,
which is a single letter that determines the action to be taken, and a number of arguments. The opcodes we
will use are “e” for end of score, “t” to set tempo, “f” to create a function table, and “i” for note events.

toString :: T -> String
toString s = unlines (map statementToString s ++ ["e"]) -- end of score

Finally, the statementToString function:

statementToString :: Statement -> String
statementToString = unwords . statementToWords

statementToWords :: Statement -> [String]
statementToWords (Tempo t) =

["t", "0", show t]
statementToWords (Note i st d p v pfs) =

79

["i", showInstrumentNumber i, show st, show d,
pchToString p, show v] ++ map show pfs

statementToWords (Table t ct s n gr) =
["f", show t, show ct, show s,
(if n then id else (’-’:))

(unwords (Generator.toStatementWords gr))]

-- it’s exciting whether CSound knows what we mean with the values
-- (0 < note) is for compatibility with older CSound example files
pchToString :: Pch -> String
pchToString (AbsPch ap) =

let (oct, note) = divMod ap 12
in show oct ++ "." ++

(if 0 < note && note < 10 then "0" else "") ++
show note

pchToString (Cps freq) = show freq

4.3.2 The Orchestra File

module Haskore.Interface.CSound.Orchestra (
T(Cons), InstrBlock(..), Header, AudRate, CtrlRate,
-- SigTerm(ConstFloat, ConstInt, TableNumber, PField, Str,
-- Read, Tap, Result, Conditional,
-- Infix, Prefix, SigGen),
SigExp, DelayLine, Boolean,
-- DelayLine(DelayLine), Boolean(Operator, Comparison),
GlobalSig(Global), Output(..), Mono(Mono), Stereo(Stereo), Quad(Quad),
EvalRate(NR, CR, AR), Instrument, Name,
sigGen, tableNumber, readGlobal, rec,

-- assorted functions
toString, saveIA, save,
channelCount, getMultipleOutputs,

-- variables dealing with PFields
noteDur, notePit, noteVel, p1, p2, p3, p4, p5, p6, p7, p8, p9, pField,

-- functions for dealing with Booleans and Conditional SigExps
(<*), (<=*), (>*), (>=*), (==*), (/=*), (&&*), (||*), ifthen,
constInt, constFloat, constEnum,

-- functions for creating signal expressions
pchToHz, dbToAmp, line, expon, lineSeg, exponSeg, env, phasor,
IndexMode(..), tblLookup, tblLookupI, osc, oscI,
fmOsc, fmOscI, sampOsc, random, randomH, randomI, genBuzz, buzz,
pluck, PluckDecayMethod(..), delay, vdelay, comb, alpass, reverb,
delTap, delTapI,

-- monad-related functions
Orc, mkSignal, addInstr, mkOrc,

-- assorted examples
orc1, test, test1) where

80

import Haskore.Interface.CSound
(Name, Instrument, instrument, instruments, showInstrumentNumber)

import Haskore.Interface.CSound.OrchestraFunction

import qualified Haskore.General.LoopTreeRecursiveGen as TreeRec
import qualified Haskore.General.LoopTreeTaggedGen as TreeTag

import Control.Monad.Trans.State (State, state, modify, execState,)
import Control.Applicative (liftA, liftA2, liftA3, pure)
import Data.Foldable (Foldable(foldMap))
import Data.Traversable (Traversable(sequenceA))
import qualified Data.Traversable as Traversable

import Haskore.General.Utility (flattenTuples2,)
import Data.List.HT (partition,)
import Data.Tuple.HT (mapSnd,)
import Data.Maybe.HT (toMaybe,)
import Data.Maybe (mapMaybe,)
import Data.List (nub, intersperse, (\\),)

The orchestra file consists of two parts: a header, and one or more instrument blocks. The header sets
global parameters controlling sampling rate and control rate. The instrument blocks define instruments, each
identified by a unique integer ID, and containing statements modifying or generating various audio signals.
Each note statement in a score file passes all its arguments—including the p-fields—to its corresponding
instrument in the orchestra file. While some properties vary from note to note, and should therefore be
designed as p-fields, many can be defined within the instrument; the choice is up to the user.

The orchestra file is represented as:

data Output out =>
T out = Cons Header [InstrBlock out] deriving (Show, Eq)

The orchestra header sets the audio rate, control rate, and number of output channels:

type Header = (AudRate, CtrlRate)

type AudRate = Int -- samples per second
type CtrlRate = Int -- samples per second

Digital computers represent continuous analog audio waveforms as a sequence of discrete samples. The
audio rate (AudRate) is the number of these samples calculated each second. Theoretically, the maximum
frequency that can be represented is equal to one-half the audio rate. Audio CDs contain 44,100 samples per
second of music, giving them a maximum sound frequency of 22,050 Hz, which is as high as most human
ears are able to hear.

Computing 44,100 values each second can be a demanding task for a CPU, even by today’s standards.
However, some signals used as inputs to other signal generating routines don’t require such a high resolution,
and can thus be generated at a lower rate. A good example of this is an amplitude envelope, which changes
relatively slowly, and thus can be generated at a rate much lower than the audio rate. This rate is called the
control rate (CtrlRate), and is set in the orchestra file header. The audio rate is usually a multiple of the
control rate, but this is not a requirement.

81

Each instrument block contains four things: a unique identifying integer; an expression giving the
amount of extra time the instrument should be granted, usually used for reverb; an Output expression
that gives the outputs in terms of orchestra expressions, called SigExps; and a list of global signals and the
SigExps that are written out to those signals.

type Reverb = SigExp
data InstrBlock a =

InstrBlock {instrBlockInstr :: Instrument,
instrBlockReverb :: Reverb,
instrBlockOutput :: a,
instrBlockGlobals :: [(GlobalSig, SigExp)]}

deriving (Show, Eq)

Recall that Instrument is a type synonym for an Int. This value may be obtained from a string name and
a name map using the function getId :: NameMap -> Name -> Maybe Int discussed earlier.

Orchestra Expressions The data type SigExp is the largest deviation that we will make from the actual
CSound design. In CSound, instruments are defined using a sequence of statements that, in a piecemeal
manner, define the various oscillators, summers, constants, etc. that make up an instrument. These pieces
can be given names, and these names can be referenced from other statements. But despite this rather
imperative, statement-oriented approach, it is acually completely functional. In other words, every CSound
instrument can be rewritten as a single expression. It is this “expression language” that we capture in
SigExp. A pleasant attribute of the result is that CSound’s ad hoc naming mechanism is replaced with
Haskell’s conventional way of naming things.

The entire SigExp data type declaration, as well as the declarations for related datatypes, is shown in
Figure 11. In what follows, we describe each of the various constructors in turn.

Constants ConstFloat x represents the floating-point constant x.

P-field Arguments pField n refers to the nth p-field argument. Recall that all note characteristics,
including pitch, volume, and duration, are passed into the orchestra file as p-fields. For example, to access
the pitch, one would write pField 4. To make the access of these most common p-fields easier, we define
the following constants:

noteDur, notePit, noteVel :: SigExp
noteDur = pField 3
notePit = pField 4
noteVel = pField 5

pField :: Int -> SigExp
pField n = TreeRec.Branch (PField n)

It is also useful to define the following standard names, which are identical to those used in CSound:

p1,p2,p3,p4,p5,p6,p7,p8,p9 :: SigExp
p1 = pField 1
p2 = pField 2

82

type Function = String
type OutCount = Integer
type Table = Int

type Boolean = BooleanTerm SigExp
data BooleanTerm tree =

Operator Function (BooleanTerm tree) (BooleanTerm tree)
| Comparison Function tree tree

deriving (Show, Eq)

data GlobalSig =
Global EvalRate (SigExp -> SigExp -> SigExp) Int

instance Show GlobalSig where
show (Global rt _ n) = "Global " ++ show rt ++ " <function> " ++ show n

instance Eq GlobalSig where
Global r1 _ n1 == Global r2 _ n2 = r1 == r2 && n1 == n2

type DelayLine = DelayLineTerm SigExp
data DelayLineTerm tree = DelayLine tree tree

deriving (Show, Eq)

data SigTerm tree =
ConstFloat Float

| ConstInt Int
| TableNumber Table
| PField Int
| Str String
| Read GlobalSig
| Tap Function (DelayLineTerm tree) [tree]
| Result (DelayLineTerm tree)
| Conditional (BooleanTerm tree) tree tree
| Infix Function tree tree
| Prefix Function tree
| SigGen Function EvalRate OutCount [tree]
| Index OutCount (SigTerm tree)

deriving (Show, Eq)

instance Functor BooleanTerm where
fmap f branch =

case branch of
Operator nm left right -> Operator nm (fmap f left) (fmap f right)
Comparison nm left right -> Comparison nm (f left) (f right)

instance Functor DelayLineTerm where
fmap f (DelayLine x y) = DelayLine (f x) (f y)

instance Functor SigTerm where
fmap f branch =
case branch of

{- The first cases look like they could be handled
by returning just ’branch’. But this does not work,
because the result have a different type in general. -}

ConstFloat x -> ConstFloat x
ConstInt n -> ConstInt n
TableNumber t -> TableNumber t
PField n -> PField n
Str str -> Str str
Read t -> Read t
Tap nm del xs -> Tap nm (fmap f del) (map f xs)
Result del -> Result (fmap f del)
Conditional b true false ->

Conditional (fmap f b) (f true) (f false)
Infix nm left right -> Infix nm (f left) (f right)
Prefix nm arg -> Prefix nm (f arg)
SigGen nm rate cnt args ->

SigGen nm rate cnt (map f args)
Index cnt x -> Index cnt (fmap f x)

instance TreeTag.CollShow SigTerm where
collShowsPrec = showsPrec

instance TreeTag.CollEq SigTerm where
collEqual = (==)

type SigExp = TreeRec.T SigTerm

tableNumber :: Table -> SigExp
tableNumber n = TreeRec.Branch (TableNumber n)

readGlobal :: GlobalSig -> SigExp
readGlobal glob = TreeRec.Branch (Read glob)

Figure 11: The SigExp Data Type

83

p3 = pField 3
p4 = pField 4
p5 = pField 5
p6 = pField 6
p7 = pField 7
p8 = pField 8
p9 = pField 9

Strings Str s represents a string argument in CSound — a type of argument that is very rarely used,
but is included here for the sake of completeness.

Reading and Writing Global Signals Read g is the counterpart to the (GlobalSig, SigExp)
pairs in the InstrBlock statements, reading instead of writing global signals. Together, they allow for
audio and control signals to be passed from instrument to instrument, and used for things like panning or
overall envelopes.

Logical and Conditional Statements You probably noticed that Boolean was defined alongside
SigExp in Figure ??. Boolean is a type of expression used in the Conditional SigExp — basi-
cally, it’s a comparison or some logical function of two comparisons. In other words, a Boolean is an
expression that evaluates to a boolean. The syntax is fairly simple — a Boolean is either a Comparison,
a function comparing two SigExps and returning a Boolean; or an Operator, a function from two
Booleans to a third Boolean, such as the logical “and” operator. Thus we can express, for example, a
query about whether a certain p-value lies within a range by evaluating this expression:

Operator "&&" (Comparison "<" 1 p2) (Comparison "<" p2 3)

The above expression will create a CSound expression that is true when p2 lies between 1 and 3.

Booleans can be used inside of a Conditional expression in order to choose one of two values
based on the trueness or falseness of the Boolean. For example:

Conditional (Comparison ">" p1 p2) p1 p2

will return the maximum of the two values p1 and p2. We are including several functions that will
perform this automatically:

(<*), (<=*), (>*), (>=*), (==*), (/=*) ::
-- SigExp -> SigExp -> Boolean
TreeTerm term =>

TreeRec.T term -> TreeRec.T term -> BooleanTerm (TreeRec.T term)
(<*) = comparisonTerm "<"
(<=*) = comparisonTerm "<="
(>*) = comparisonTerm ">"
(>=*) = comparisonTerm ">="
(==*) = comparisonTerm "=="
(/=*) = comparisonTerm "!="

(&&*), (||*) :: Boolean -> Boolean -> Boolean

84

(&&*) = operator "&&"
(||*) = operator "||"

operator :: String -> Boolean -> Boolean -> Boolean
operator = Operator

Arithmetic and Transcendental Functions Arithmetic functions are represented in various ways,
depending on the type of function. The standard binary operators — plus and times, for instance — are
infix operators, and so they can be crafted in this module using the Infix constructor, specifying the name
of the function (the text used to express it in CSound) and the two arguments to the function. The other
mathematical operators, such as sin, log, or sqrt, can be expressed with a Prefix constructor, passing
the name of the function in CSound (usually the same as the name in Haskell, although not always) and the
argument to the given function. Examples of this are:

Infix "+" (PField 1) (Prefix "sin" 1 (ConstFloat 3.0))
Prefix "sqrt" (Infix "*" (PField 3) (PField 4))

To facilitate the use of these arithmetic functions, we can make SigExp an instance of certain numeric
type classes, thus providing more conventional names for the various operations.

sigGen :: Function -> EvalRate -> OutCount -> [SigExp] -> SigExp
sigGen nm rate cnt args = TreeRec.Branch (SigGen nm rate cnt args)

constFloat :: Float -> SigExp
constFloat = TreeRec.Branch . ConstFloat

constInt :: Int -> SigExp
constInt = TreeRec.Branch . ConstInt

constEnum :: Enum a => a -> SigExp
constEnum = TreeRec.Branch . ConstInt . fromEnum

class TreeTerm term where
constTerm :: Float -> TreeRec.T term
prefixTerm :: Function -> TreeRec.T term -> TreeRec.T term
infixTerm :: Function -> TreeRec.T term -> TreeRec.T term -> TreeRec.T term
comparisonTerm :: Function -> TreeRec.T term -> TreeRec.T term ->

BooleanTerm (TreeRec.T term)
ifthen :: BooleanTerm (TreeRec.T term) ->

TreeRec.T term -> TreeRec.T term -> TreeRec.T term

instance TreeTerm SigTerm where
constTerm x = TreeRec.Branch (ConstFloat x)
prefixTerm nm x = TreeRec.Branch (Prefix nm x)
infixTerm nm x y = TreeRec.Branch (Infix nm x y)
comparisonTerm nm x y = Comparison nm x y
ifthen b x y = TreeRec.Branch (Conditional b x y)

We can not request term == SigTerm TreeRec.T that’s why we have to define the TreeTerm
class and the instance for SigTerm.

85

instance (TreeTag.CollShow term, TreeTag.CollEq term,
Functor term, TreeTerm term) =>

Num (TreeRec.T term) where
(+) = infixTerm "+"
(-) = infixTerm "-"
(*) = infixTerm "*"
negate = prefixTerm "-"
abs = prefixTerm "abs"
signum x = ifthen (x <* 0) (-1) (ifthen (x >* 0) 1 0)
fromInteger = constTerm . fromInteger

instance (TreeTag.CollShow term, TreeTag.CollEq term,
Functor term, TreeTerm term) =>

Fractional (TreeRec.T term) where
(/) = infixTerm "/"
fromRational = constTerm . fromRational

{-
fromRational x =

fromInteger (numerator x) /
fromInteger (denominator x)

-}

instance (TreeTag.CollShow term, TreeTag.CollEq term,
Functor term, TreeTerm term) =>

Floating (TreeRec.T term) where
exp = prefixTerm "exp"
log = prefixTerm "log"
sqrt = prefixTerm "sqrt"
(**) = infixTerm "^"
pi = constTerm pi
sin = prefixTerm "sin"
cos = prefixTerm "cos"
tan = prefixTerm "tan"
asin = prefixTerm "sininv"
acos = prefixTerm "cosinv"
atan = prefixTerm "taninv"
sinh = prefixTerm "sinh"
cosh = prefixTerm "cosh"
tanh = prefixTerm "tanh"
asinh x = log (sqrt (x*x+1) + x)
acosh x = log (sqrt (x*x-1) + x)
atanh x = (log (1+x) - log (1-x)) / 2

Now we can write simpler code, such as: noteDur + sin p6 ** 2.

Other Prefixs sin, log, and sqrt aren’t the only functions that use Prefix as a constructor —
Prefix is used for all functions in CSound that take a single argument and are represented like normal
mathematical functions. Most of these functions are, indeed, mathematical, such as the function convert-
ing a CSound pitch value to the number of cycles per second, or the function converting decibels to the
corresponding amplitude.

For convenience, we will define a few common operators here:

86

> pchToHz, dbToAmp :: SigExp -> SigExp
> pchToHz = prefixTerm "cpspch"
> dbToAmp = prefixTerm "ampdb"

Now, when we want to convert a pitch to its hertz value or a decibel level to the desired amplitude, we
can simply say pchToHz notePit or dbToAmp noteVel.

Signal Generation and Modification The most sophisticated SigExp constructor is sigGen, which
drives most of the functions used for signal generation and modification. The constructor takes four argu-
ments: the name of the function to be used, such as envlpx or oscili; the rate of output; the number of
outputs (covered in a later section); and a list of all the arguments to be passed.

Most of these we have seen before. But what is the rate of output? Well, signals in CSound can be
generated at three rates: the note rate (i.e., with, every note event), the control rate, and the audio rate (we
discussed the latter two earlier). Many of the signal generating routines can produce signals at more than one
rate, so the rate must be specified as an argument. The following simple data structure serves this purpose:

data EvalRate = NR -- note rate
| CR -- control rate
| AR -- audio rate

deriving (Show, Eq, Ord)

All right, so now we know what the arguments are. But what does the sigGen constructor actually do?
Like the other kinds of SigExps, it has an input and an output. In Haskore, it acts just the same as any other
kind of function. But when written to a CSound Orchestra file, each sigGen receives a variable name that
it is assigned to, and each sigGen is written to a single line of the CSound file.

sigGens can be used for all sorts of things — CSound has a very large variety of functions, most
of which are actually sigGens. They can do anything from generating a simple sine wave to generating
complex signals. Most of them, however, have to do with signal generation; hence the name sigGen. For
the user’s sake, we will outline a few of the CSound functions here:

1. The CSound statement line evalrate start duration finish, produces values along a
straight line from start to finish. The values can be generated either at control or audio rate, and
the line covers a period of time equal to duration seconds. We can translate this into CSound like
so:

line, expon :: EvalRate -> SigExp -> SigExp -> SigExp -> SigExp
line rate start duration finish =

sigGen "line" rate 1 [start, duration, finish]

2. expon is similar to line, but the code expon evalrate start duration finish pro-
duces an exponential curve instead of a straight line.

expon rate start duration finish =
sigGen "expon" rate 1 [start, duration, finish]

87

3. If a more elaborate signal is required, one can use the CSound functions linseg or expseg, which
take any odd number of arguments greater than or equal to three. The first three arguments work as
before, but only for the first of a number of segments. The subsequent segment lengths and endpoints
are given in the rest of the arguments. A signal containing both straight line and exponential segments
can be obtained by adding a linseg signal and expseg signal together in an appropriate way.

The Haskore code is more complicated for this, because there are an arbitrary but odd number of
arguments. So we will give the first three arguments as we did with the line and expon functions,
and then have a list of pairs, which will be flattened into an argument list:

lineSeg, exponSeg :: EvalRate -> SigExp -> SigExp -> SigExp
-> [(SigExp, SigExp)] -> SigExp

lineSeg rate y0 x1 y1 lst =
sigGen "linseg" rate 1 ([y0, x1, y1] ++ flattenTuples2 lst)

exponSeg rate y0 x1 y1 lst =
sigGen "expseg" rate 1 ([y0, x1, y1] ++ flattenTuples2 lst)

4. The Haskore code env rate rshape sattn dattn steep dtime rtime durn sig
modifies the signal sig by applying an envelope to it.7 rtime and dtime are the rise time and
decay time, respectively (in seconds), and durn is the overall duration. rshape is the identifier
integer of a function table storing the rise shape. sattn is the pseudo-steady state attenuation factor.
A value between 0 and 1 will cause the signal to exponentially decay over the steady period, a value
greater than 1 will cause the signal to exponentially rise, and a value of 1 is a true steady state main-
tained at the last rise value. steep, whose value is usually between −0.9 and +0.9, influences the
steepness of the exponential trajectory. dattn is the attenuation factor by which the closing steady
state value is reduced exponentially over the decay period, with value usually around 0.01.

In Haskore, this becomes a fairly simple function, going from an EvalRate and eight SigExps to
one single SigExp:

env :: EvalRate -> SigExp -> SigExp -> SigExp -> SigExp -> SigExp
-> SigExp -> SigExp -> SigExp -> SigExp

env rate rshape sattn dattn steep dtime rtime durn sig =
sigGen "envlpx" rate 1

[sig, rtime, durn, dtime, rshape, sattn, dattn, steep]

5. Typing phasor phase freq into CSound generates a signal moving from 0 to 1 at a given fre-
quency and starting at the given initial phase offset. When used properly as the index to a table lookup
unit, the function can simulate the behavior of an oscillator. We implement it in Haskore thus:

phasor :: EvalRate -> SigExp -> SigExp -> SigExp
phasor rate phase freq = sigGen "phasor" rate 1 [freq, phase]

6. CSound table lookup functions table and tablei both take index, table, and indexmode
arguments. The indexmode is either 0 or 1, differentiating between raw index and normalized index
(zero to one); for convenience we define:

7Although this function is widely-used in CSound, the same effect can be accomplished by creating a signal that is a combination
of straight line and exponential curve segments, and multiplying it by the signal to be modified.

88

data IndexMode =
RawIndex

| NormalIndex
deriving (Show, Eq, Enum)

Both table and tablei return values stored in the specified table at the given index. The difference
is that tablei uses the fractional part of the index to interpolate between adjacent table entries,
which generates a smoother signal at a small cost in execution time. The equivalent Haskore code to
the CSound functions is:

tblLookup, tblLookupI ::
EvalRate -> IndexMode -> SigExp -> SigExp -> SigExp

tblLookup rate mode table ix =
sigGen "table" rate 1 [ix, table, constEnum mode]

tblLookupI rate mode table ix =
sigGen "tablei" rate 1 [ix, table, constEnum mode]

As mentioned, the output of phasor can be used as input to a table lookup to simulate an oscillator
whose frequency is controlled by the note pitch. This can be accomplished easily by the following
piece of Haskore code:

oscil = let index = phasor AR (pchToHz notePit) 0.0
in tblLookupI AR NormalIndex table index

where table is some given function table ID. If oscil is given as argument to an output constructor
such as MonoOut, then this Output coupled with an instrument ID number (say, 1) produces a
complete instrument block:

i1 = (1, MonoOut oscil)

Adding a suitable Header would then give us a complete, though somewhat sparse,
CSound.Orchestra.T value.

7. Instead of the above design we could use one of the built-in CSound oscillators, oscil and oscili,
which differ in the same way as table and tablei. Both CSound functions take the following
arguments: raw amplitude, frequency, and the index of a table. The result is a signal that oscillates
through the function table at the given frequency. Let the Haskore functions be as follows:

osc, oscI :: EvalRate -> SigExp -> SigExp -> SigExp -> SigExp
osc rate table amp freq = sigGen "oscil" rate 1 [amp, freq, table]
oscI rate table amp freq = sigGen "oscili" rate 1 [amp, freq, table]

Now, the following statement is equivalent to osc, defined above:

8. It is often desirable to use the output of one oscillator to modulate the frequency of another, a pro-
cess known as frequency modulation. The Haskore code fmOsc table modindex carfreq
modfreq amp freq produces a signal whose effective modulating frequency is freq*modfreq,
and whose carrier frequency is freq*carfreq. modindex is the index of modulation, usually a

89

value between 0 and 4, which determines the timbre of the resulting signal. oscili behaves similarly
to oscil, except that it, like tablei and oscili, interpolates between values.

Interestingly enough, these two functions are the first listed here that work at audio rate only; thus,
we do not have to pass the rate as an argument to the helper function, because the rate is always AR.
Thus, the Haskore code is:

fmOsc, fmOscI :: SigExp -> SigExp -> SigExp -> SigExp -> SigExp
-> SigExp -> SigExp

fmOsc table modindex carfreq modfreq amp freq =
sigGen "foscil" AR 1 [amp, freq, carfreq, modfreq, modindex, table]

fmOscI table modindex carfreq modfreq amp freq =
sigGen "foscili" AR 1 [amp, freq, carfreq, modfreq, modindex, table]

9. sampOsc table amp freq oscillates through a table containing an AIFF sampled sound seg-
ment. This is the only time a table can have a length that is not a power of two, as mentioned earlier.
Like fmOsc, sampOsc can only generate values at the audio rate:

sampOsc :: SigExp -> SigExp -> SigExp -> SigExp
sampOsc table amp freq = sigGen "loscil" AR 1 [amp, freq, table]

10. The Haskore code random rate amp produces a random number series between -amp and +amp
at either control or audio rate. randomH rate quantRate amp does the same but will hold each
number for quantRate cycles before generating a new one. randomI rate quantRate amp
will in addition provide straight line interpolation between successive numbers:

random :: EvalRate -> SigExp -> SigExp
random rate amp = sigGen "rand" rate 1 [amp]

randomH, randomI :: EvalRate -> SigExp -> SigExp -> SigExp
randomH rate quantRate amp = sigGen "randh" rate 1 [amp, quantRate]
randomI rate quantRate amp = sigGen "randi" rate 1 [amp, quantRate]

The remaining functions covered in this file only operate at audio rate, and thus their Haskore equiv-
alents do not have rate arguments.

11. genBuzz table multiplier loharm numharms amp freq generates a signal that is an
additive set of harmonically related cosine partials. freq is the fundamental frequency, numharms
is the number of harmonics, and loharm is the lowest harmonic present. The amplitude coefficients
of the harmonics are given by the exponential series a, a * multiplier, a * multiplierˆ2,
. . ., a * multiplierˆ(numharms-1). The value a is chosen so that the sum of the amplitudes
is amp. table is a function table containing a cosine wave.

genBuzz :: SigExp -> SigExp -> SigExp -> SigExp -> SigExp
-> SigExp -> SigExp

genBuzz table multiplier loharm numharms amp freq =
sigGen "gbuzz" AR 1 [amp, freq, numharms, loharm, multiplier, table]

12. buzz is a special case of genBuzz in which loharm = 1.0 and multiplier = 1.0. table
is a function table containing a sine wave:

90

buzz :: SigExp -> SigExp -> SigExp -> SigExp -> SigExp
buzz table numharms amp freq =

sigGen "buzz" AR 1 [amp, freq, numharms, table]

Note that the above two constructors have an analog in the generating routine GEN11 and the related
function cosineHarms (see Section 4.3.1). cosineHarms stores into a table the same waveform
that would be generated by buzz or genBuzz. However, although cosineHarms is more efficient,
it has fixed arguments and thus lacks the flexibility of buzz and genBuzz in being able to vary the
argument values with time.

13. pluck table freq2 decayMethod amp freq is an audio signal that simulates a plucked
string or drum sound, constructed using the Karplus-Strong algorithm. The signal has amplitude amp
and frequency freq2. It is produced by iterating through an internal buffer that initially contains
a copy of table and is smoothed with frequency freq to simulate the natural decay of a plucked
string. If 0.0 is used for table, then the initial buffer is filled with a random sequence. There are six
possible decay modes:

(a) simple smoothing, which ignores the two arguments;

(b) stretched smoothing, which stretches the smoothing time by a factor of decarg1, ignoring
decarg2;

(c) simple drum, where decarg1 is a “roughness factor” (0 for pitch, 1 for white noise; a value of
0.5 gives an optimal snare drum sound);

(d) stretched drum, which contains both roughness (decarg1) and stretch (decarg2) factors;

(e) weighted smoothing, in which decarg1 gives the weight of the current sample and decarg2
the weight of the previous one (decarg1+decarg2 must be ≤ 1); and

(f) recursive filter smoothing, which ignores both arguments.

Here again are some helpful constants:

data PluckDecayMethod =
PluckSimpleSmooth

| PluckStretchSmooth SigExp
| PluckSimpleDrum SigExp
| PluckStretchDrum SigExp SigExp
| PluckWeightedSmooth SigExp SigExp
| PluckFilterSmooth

And here is the Haskore code for the CSound pluck function:

pluck :: SigExp -> SigExp -> PluckDecayMethod
-> SigExp -> SigExp -> SigExp

pluck table freq2 decayMethod amp freq =
sigGen "pluck" AR 1

([amp, freq, freq2, table] ++
case decayMethod of
PluckSimpleSmooth ->

[constInt 1]
PluckStretchSmooth stretch ->

[constInt 2, stretch]

91

PluckSimpleDrum roughness ->
[constInt 3, roughness]

PluckStretchDrum roughness stretch ->
[constInt 4, roughness, stretch]

PluckWeightedSmooth weightCur weightPrev ->
[constInt 5, weightCur, weightPrev]

PluckFilterSmooth ->
[constInt 6])

14. delay delayTime sig takes a signal sig and delays it by delayTime — basically making
it start delayTime later than it normally would have. This is a simple version of delay lines and
delay taps, capable of performing all of the effects that don’t involve feeding the result of a delay or
a tap back into the input. This topic is more complicated and will be considered in the next section.
In constrast to delay, the function vdelay also allows for a controlled delay. But for memory
allocation reasons it must also know the maximum possible delay (in seconds).

delay :: SigExp -> SigExp -> SigExp
delay delayTime sig = sigGen "delay" AR 1 [sig, delayTime]

vdelay :: SigExp -> SigExp -> SigExp -> SigExp
vdelay maxDelay delayTime sig =

sigGen "vdelay" AR 1 [sig, delayTime, maxDelay*1000]

15. Reverberation can be added to a signal using the CSound functions comb looptime revtime
sig, alpass looptime revtime sig, and reverb revtime sig. revtime is the time
in seconds it takes a signal to decay to 1/1000th of its original amplitude, and looptime is the echo
density. comb produces a “colored” reverb, alpass a “flat” reverb, and reverb a “natural room”
reverb:

comb :: SigExp -> SigExp -> SigExp -> SigExp
comb looptime revtime sig =

sigGen "comb" AR 1 [sig, revtime, looptime]

alpass :: SigExp -> SigExp -> SigExp -> SigExp
alpass looptime revtime sig =

sigGen "alpass" AR 1 [sig, revtime, looptime]

reverb :: SigExp -> SigExp -> SigExp
reverb revtime sig =

sigGen "reverb" AR 1 [sig, revtime]

Delay Lines and Tapping DelayLine deltime audiosig establishes a digital delay line,
where audiosig is the source, and deltime is the delay time in seconds. That DelayLine can either
be simply read, by the Result delayline constructor, or tapped, by the Tap tapname delayline
args constructor.

The most common tap functions are deltap and deltapi, where deltapi is the interpolating
version of deltap. Thus we will include helper functions for both of those functions:

92

delTap, delTapI :: DelayLine -> SigExp -> SigExp
delTap dl tap = TreeRec.Branch (Tap "deltap" dl [tap])
delTapI dl tap = TreeRec.Branch (Tap "deltapi" dl [tap])

Recursive Statements In some cases, the user may want their instrument to have certain special effects
— such as an infinite echo, going back and forth but getting fainter and fainter. It would seem logical that
the user would, in that case, write something like this:

x = sig + delay (0.5 * x) 1.0

Unfortunately, the translation process cannot handle statements like that, and any kind of statement
which is defined in terms of itself must be written a different way. Within Haskore, recursive statements are
handled using three constructors: Loop, Var, and Rec. However, these three constructors are not available
to the users, and so we offer a very simple solution: the rec function:

rec :: (SigExp -> SigExp) -> SigExp
rec = TreeRec.recourse

In order to perform the infinite echo listed above, we would write this code:

x = rec (\y -> sig + delay (0.5 * y) 1.0)

Thus rec, in some ways, is a bit like fix, although it doesn’t actually do the computation — instead, it
juggles some code around and passes the problem off to CSound.

When the SigExp is processed, all Rec constructors are converted into a SigExp with Loop and
Var constructors. Each Loop has some number of matching Var statements, with the same unique integer
referring to both. This is done through the runFix function and its various helper functions:

type SigFixed = TreeTag.T TreeRec.Tag SigTerm

runFix, simpleFix :: SigExp -> SigFixed
runFix = addEqTree . TreeRec.toTaggedUnique 1
{- some expressions need no loop unwinding,

toTagged does unwinding anyway, but with less overhead
and shared loop ids -}

simpleFix = TreeRec.toTagged 0

instance Foldable BooleanTerm where
foldMap = Traversable.foldMapDefault

instance Traversable BooleanTerm where
sequenceA branch =

case branch of
Operator nm left right ->

liftA2 (Operator nm) (sequenceA left) (sequenceA right)
Comparison nm left right ->

liftA2 (Comparison nm) (left) (right)

instance Foldable DelayLineTerm where
foldMap = Traversable.foldMapDefault

93

instance Traversable DelayLineTerm where
sequenceA (DelayLine x y) = liftA2 DelayLine x y

instance Foldable SigTerm where
foldMap = Traversable.foldMapDefault

instance Traversable SigTerm where
sequenceA branch =
case branch of

{- compare with Functor instance -}
ConstFloat x -> pure $ ConstFloat x
ConstInt n -> pure $ ConstInt n
TableNumber t -> pure $ TableNumber t
PField n -> pure $ PField n
Str str -> pure $ Str str
Read t -> pure $ Read t
Tap nm del xs -> liftA2 (Tap nm) (sequenceA del) (sequenceA xs)
Result del -> liftA Result (sequenceA del)
Conditional b true false ->

liftA3 Conditional (sequenceA b) true false
Infix nm left right -> liftA2 (Infix nm) left right
Prefix nm arg -> liftA (Prefix nm) arg
SigGen nm rate cnt args ->

liftA (SigGen nm rate cnt) (sequenceA args)
Index cnt x -> liftA (Index cnt) (sequenceA x)

-- fixSig (Rec (LoopFunction f)) =
-- do n <- get; put (n + 1); fixSig (Loop n (addEq (f (Var n))))

addEqTree :: SigFixed -> SigFixed
addEqTree (TreeTag.Branch x) = TreeTag.Branch (fmap addEqTree x)
addEqTree (TreeTag.Tag t x) = TreeTag.Tag t (addEqTree (addEq x))
addEqTree (TreeTag.Loop t) = TreeTag.Loop t

addEq :: SigFixed -> SigFixed
addEq ex =

case ex of
TreeTag.Branch (SigGen _ _ _ _) -> ex
TreeTag.Branch (Tap _ _ _) -> ex
TreeTag.Branch (Result _) -> ex
_ -> TreeTag.Branch (SigGen "="

(if CR == getRate ex
then CR else AR) 1 [ex])

getRate :: SigFixed -> EvalRate
getRate (TreeTag.Branch branch) = getRateTerm branch
getRate (TreeTag.Tag _ arg) = getRate arg
getRate (TreeTag.Loop _) = error "getRate: undefined rate"

getRateTerm :: SigTerm SigFixed -> EvalRate
getRateTerm branch =

case branch of
Tap _ _ _ -> AR
Result _ -> AR

94

Conditional _ a b -> max (getRate a) (getRate b)
Infix _ a b -> max (getRate a) (getRate b)
Prefix _ arg -> getRate arg
SigGen _ rt _ _ -> rt
Index _ arg -> getRateTerm arg
_ -> NR

Note that the addEq function is used to add an equal sign to the statement being looped, provided that
the statement is not already one of the signal generating ones. Also note that if the rate of the statement is
NR, the new rate will be AR — this is because you cannot have an infinitely recursive statement at the note
rate.

Ideally, all SigExp statements should have runFix applied to them. So we have the
getFixedExpressions function, used as a replacement to the standard getChannels of the
Output class:

getFixedExpressions :: Output a => a -> [SigFixed]
getFixedExpressions = map (aux . runFix) . getChannels

where aux ex =
if AR == getRate ex
then ex
else TreeTag.Branch (SigGen "=" AR 1 [ex])

Signal Generators with Multiple Outputs When looking through the CSound documentation, you
may notice that there are certain functions, such as convolve or babo that do not have the same structure
in CSound as the most of the rest of the functions. This is because those are two operators that actually
return multiple outputs. While this type of function is not extremely common, we have included code that
can, in fact, handle such functions. The third argument to the sigGen constructor actually specifies the
number of arguments to be returned. In most cases, this should simply be set to one; in a few cases, such as
convolve or babo, this should be set to however many outputs you want returned from the function.

But how do you get to those outputs? Well, the Index constructor is used from within the code, but the
user cannot access that. So we have the following function:

getMultipleOutputs :: SigExp -> [SigExp]
getMultipleOutputs (TreeRec.Branch ex@(SigGen _ _ outCount _)) =

if outCount==1
then error ("cannot get multiple outputs from a function with one output")
else map (TreeRec.Branch . flip Index ex) [1..outCount]

getMultipleOutputs _ =
error ("cannot get multiple outputs from a non-SigGen")

Which can be called on any sigGen statement returning multiple arguments, and returns a list of the
outputs. In other words, you could write something like this:

[a1, a2] = getMultipleOutputs
(LineStatement "babo" AR 2 [sig, 0, 0, 0, 5, 5, 5])

Haskell would then pattern-match, and leave you with two variables, a1 and a2.

95

Output Operators Now that we’ve got all of those interesting methods of signal generation under our
belts, we need some way to make CSound play these interesting sound waves. Hence, the output statements,
all of which must be instances of the Output class:

class (Show c, Eq c) => Output c where
getChannels :: c -> [SigExp]
getName :: c -> String
getChannelCount :: c -> Int

The getChannelCount could be pre-defined with length . getChannels but this would
require that we have actually an Output value at hand when calling getChannelCount.

We have defined several common types of output, including Mono, which allows for the writing of one
output channel; Stereo, which allows for two; and Quad, which, unsurprisingly, allows four:

data Mono = Mono SigExp deriving (Show, Eq)
data Stereo = Stereo SigExp SigExp deriving (Show, Eq)
data Quad = Quad SigExp SigExp SigExp SigExp deriving (Show, Eq)

instance Output Mono where
getChannels (Mono x) = [x]
getName _ = "out"
getChannelCount _ = 1

instance Output Stereo where
getChannels (Stereo x1 x2) = [x1, x2]
getName _ = "outs"
getChannelCount _ = 2

instance Output Quad where
getChannels (Quad x1 x2 x3 x4) = [x1, x2, x3, x4]
getName _ = "outq"
getChannelCount _ = 4

The user is welcome to add more by declaring them instances of the Output class and then filling out
the required methods.

Converting Orchestra Values to Orchestra Files We must now convert the SigExp values into a form
which can be written into a CSound .sco file. As mentioned earlier, each signal generation or modification
statement in CSound assigns its result a string name. This name is used whenever another statement takes
the signal as an argument. Names of signals generated at note rate must begin with the letter i, control rate
with letter k, and audio rate with letter a. The output statements do not generate a signal so they do not have
a result name.

The function mkList is shown in Figure 12, and generates a list containing every single sub-expression
of the given SigExp. It uses the following auxiliary functions:

type DelayLineFixed = DelayLineTerm SigFixed
type BooleanFixed = BooleanTerm SigFixed

mkListAll :: [SigFixed] -> [SigFixed]
mkListAll = concatMap mkList

96

mkList :: SigFixed -> [SigFixed]
mkList ex@(TreeTag.Branch n) = ex : mkListTerm n
mkList ex@(TreeTag.Tag _ x) = ex : mkList x
mkList (TreeTag.Loop _) = []

mkListTerm :: SigTerm SigFixed -> [SigFixed]
mkListTerm term =

case term of
Tap _ dl lst -> mkListDL dl ++ mkListAll lst
Result dl -> mkListDL dl
Conditional a b c -> mkListBool a ++ mkListAll [b, c]
Infix _ a b -> mkListAll [a, b]
Prefix _ x -> mkList x
SigGen _ _ outCount lst ->

if outCount == 1
then mkListAll lst
else map (TreeTag.Branch . flip Index term) [1..outCount]

++ mkListAll lst
-- cf. getMultipleOutputs

Index _ expr -> mkListTerm expr
_ -> []

Figure 12: The mkList Function

mkListDL :: DelayLineFixed -> [SigFixed]
mkListDL (DelayLine x1 x2) = mkListAll [x1, x2]

mkListBool :: BooleanFixed -> [SigFixed]
mkListBool (Operator _ a b) = concatMap mkListBool [a, b]
mkListBool (Comparison _ a b) = mkListAll [a, b]

mkListOut :: Output a => InstrBlock a -> [SigFixed]
mkListOut (InstrBlock _ xtim chnls lst) =

mkListAll (simpleFix xtim : getFixedExpressions chnls ++
map (simpleFix . snd) lst)

-- there should not be any loop to be unwind in lst

Once we have the list of all of the expressions, we need to find the signal-generating ones, like Taps
and sigGens, and convert them into a list of StatementDefs, with their associated rates. This is done
using the function getLineRates.

type LineFunctionRates = [(EvalRate, StatementDef)]

data StatementDef = StatementDef Function [SigFixed]
| TapDef Function DelayLineFixed [SigFixed]
| DelayDef DelayLineFixed
| DelayWriteDef DelayLineFixed
| MultiDef Function [SigFixed]

OutCount (SigTerm SigFixed)
| IndexDef OutCount (SigTerm SigFixed)

deriving (Show, Eq)

getLineRates :: [SigFixed] -> LineFunctionRates
getLineRates = mapMaybe aux

where
aux (TreeTag.Branch n) =

case n of
Tap nm dl lst -> Just (AR, TapDef nm dl lst)

97

Result dl -> Just (AR, DelayDef dl)
SigGen nm rt ct lst -> Just (rt,

if ct==1
then StatementDef nm lst
else MultiDef nm lst ct n)

Index ct ex@(SigGen _ rt _ _) ->
Just (rt, IndexDef ct ex)

_ -> Nothing
aux _ = Nothing

DelayLines and Taps are a rather complex problem in Haskore. In CSound, there is no such thing as
an explicit delay line; you establish a delay line with a delayr opcode, and then all taps that occur between
that line and the matching delayw line belong to that particular delay line. Thus the translation from the
Haskore concept of delay lines to the CSound concept is somewhat difficult. Hence procDelay and its
various helper functions, which gather all of the taps together and add the requisite DelayWriteDef to
the end of them:

procDelay :: LineFunctionRates -> LineFunctionRates
procDelay lst@((_, DelayDef dl) : _) = setUpDelays lst dl
procDelay lst@((_, TapDef _ dl _) : _) = setUpDelays lst dl
procDelay (hd : tl) = hd : procDelay tl
procDelay [] = []

setUpDelays :: LineFunctionRates -> DelayLineFixed -> LineFunctionRates
setUpDelays lst dl =

let aux (_, DelayDef dl2) = dl == dl2
aux (_, TapDef _ dl2 _) = dl == dl2
aux _ = False
(dels, rest) = partition aux lst

in procTaps dels dl ++ procDelay rest

procTaps :: LineFunctionRates -> DelayLineFixed -> LineFunctionRates
procTaps lst dl =

[(AR, DelayDef dl)] ++ filter aux lst ++ [(AR, DelayWriteDef dl)]
where aux (_, TapDef _ _ _) = True

aux _ = False

Putting all of the above together, here is a function that converts an SigExp into a list of proper name
/ StatementDef pairs. Each one of these will eventually result in one statement in the CSound orchestra
file. (The result of getLineRates is reversed to ensure that a definition exists before it is used; and this
must be done before nub is applied (which removes duplicates), for the same reason.)

type StatementDefs = [(Name, StatementDef)]

extractFunctions :: [SigFixed] -> StatementDefs
extractFunctions =

zipWith giveName [1 ..] . nub . procDelay . reverse . getLineRates

giveName :: Int -> (EvalRate, StatementDef) -> (Name, StatementDef)
giveName n (er,x) =

let var = case er of
AR -> ’a’
CR -> ’k’

98

NR -> ’i’
in (var : show n, x)

The functions that follow are used to write the orchestra file. saveIA is similar to Score.saveIA:
it asks the user for a file name, opens the file, writes the given orchestra value to the file, and then closes the
file.

saveIA :: Output a => T a -> IO ()
saveIA orch =

do putStr "\nName your orchestra file "
putStr "(.orc extension will be added): "
name <- getLine
save name orch

save :: Output a => FilePath -> T a -> IO ()
save name orch =

writeFile (name ++ ".orc") (toString orch)

CSound.Orchestra.toString splits the task of writing the orchestra into two parts: writing the
header, and writing the instrument blocks.

toString :: Output a => T a -> String
toString orc@(Cons hdr ibs) =

let glob = getGlobal ibs
in unlines $

headerToString hdr (channelCount orc) ++
maybe [] writeGlobalHeader glob ++
concatMap instrBlockToString ibs ++
maybe [] resetGlobals glob

Writing the header is relatively simple, and is accomplished by the following function:

headerToString :: Header -> Int -> [String]
headerToString (a,k) nc =

["sr = " ++ show a,
"kr = " ++ show k,
"ksmps = " ++ show (fromIntegral a / fromIntegral k :: Double),
"nchnls = " ++ show nc]

channelCount :: Output a => T a -> Int
channelCount (Cons _ instrBlock) =

getChannelCount (instrBlockOutput (head instrBlock))

If the instance of getChannelCount does not rely on getChannels the instrBlock can be
empty.

instrBlockToString writes a single instrument block.

instrBlockToString :: Output a => InstrBlock a -> [String]
instrBlockToString ib@(InstrBlock num xtim _ _) =

let ses = mkListOut ib
noes = extractFunctions ses
lps = getLoops noes ses

in "" :

99

showInstrument num :
writeLoops lps ++
concatMap (writeExp noes lps) noes ++
writeOut noes lps ib ++
(if xtim /= 0

then ["xtratim " ++ showExp noes lps (simpleFix xtim)]
else []) ++

"endin" :
[]

showInstrument :: Instrument -> String
showInstrument instr = "instr " ++ showInstrumentNumber instr

Loop statements require special handling, including initialization at the top of each instrument and a
special set of loop definitions which are also passed to most of the writing functions. This is handled by the
following two functions:

type LoopDefs = [(TreeRec.Tag, String)]

writeLoops :: LoopDefs -> [String]
writeLoops = map ((++ " init 0") . snd)

getLoops :: StatementDefs -> [SigFixed] -> LoopDefs
getLoops noes =

let extractTag (TreeTag.Tag n ex) = Just (n, ex)
extractTag _ = Nothing

in map (mapSnd (showExp noes []))
. nub . mapMaybe extractTag

-- map and mapMaybe are separated for efficiency achieved by nub

Globals, too, require special handling: they need both a header at the top of the CSound orchestra file,
and an instrument in which to reset their values. Those requirements are fulfilled by the following functions,
which are called from the instrBlockToString function.

globalRate :: EvalRate -> String
globalRate AR = "a"
globalRate CR = "k"
globalRate NR = error ("you cannot use init-rate globals")

globalWrite, globalRead :: GlobalSig -> String
globalWrite (Global rate _ n) = "g" ++ globalRate rate ++ "w" ++ show n
globalRead (Global rate _ n) = "g" ++ globalRate rate ++ "r" ++ show n

resetGlobals :: ([GlobalSig], Instrument) -> [String]
resetGlobals (gs,num) =

let aux g =
(globalRead g ++ " = " ++ globalWrite g) :
(globalWrite g ++ " = 0") :
[]

in "" :
showInstrument num :
concatMap aux gs ++
"endin" :
[]

100

numGlobalInstrs :: Output a => [InstrBlock a] -> Instrument
numGlobalInstrs lst =

head (instruments \\ map instrBlockInstr lst)

getGlobals :: Output a => [InstrBlock a] -> [GlobalSig]
getGlobals = concatMap (map fst . instrBlockGlobals)

getGlobal :: Output a => [InstrBlock a] -> Maybe ([GlobalSig], Instrument)
getGlobal lst =

let gs = getGlobals lst
in toMaybe (not (null gs)) (gs, numGlobalInstrs lst)

writeGlobalHeader :: ([GlobalSig], Instrument) -> [String]
writeGlobalHeader (gs,num) =

let globInit g =
(globalWrite g ++ " init 0") :
(globalRead g ++ " init 0") :
[]

contents =
concatMap globInit gs ++
("turnon " ++ showInstrumentNumber num) :
[]

in "" : contents ++ "" : []

writeOutGlobals :: StatementDefs -> LoopDefs ->
[(GlobalSig, SigFixed)] -> [String]

writeOutGlobals noes lps =
let aux (g, oe) =

globalWrite g ++ " = " ++ globalWrite g ++ " + " ++
writeArgs noes lps [oe]

in map aux

Recall that after processing, the SigExp becomes a list of (Name, StatementDef) pairs. The last
few functions write each of these named StatementDefs as a statement in the orchestra file. Whenever
a signal generation/modification constructor is encountered in an argument list of another constructor, the
argument’s string name is used instead, as found in the list of (Name, StatementDef) pairs.

The Orc Monad The global signals can be somewhat difficult to handle, especially when there are quite
a few of them. After all, they must all be different; otherwise, the user may have two instruments writing
completely different things to the same signal, and using the same signals for completely different things.
However, there is an easier way to do this — a monad that allows for a much simpler way of getting global
signals:

type Orc a b = State (OrcState a) b
data OrcState a = OrcState [InstrBlock a] Int deriving (Show, Eq)

mkSignalPlain :: EvalRate -> (SigExp -> SigExp -> SigExp) -> OrcState a
-> (GlobalSig, OrcState a)

mkSignalPlain rate func (OrcState ibs gCount) =
(Global rate func gCount, OrcState ibs (gCount + 1))

mkSignal :: Output a => EvalRate -> (SigExp -> SigExp -> SigExp)

101

writeOut :: Output a => StatementDefs -> LoopDefs -> InstrBlock a -> [String]
writeOut noes lps (InstrBlock _ _ chnls lst) =

(getName chnls ++ " " ++ writeArgs noes lps (getFixedExpressions chnls)) :
writeOutGlobals noes lps (map (mapSnd simpleFix) lst)

writeExp :: StatementDefs -> LoopDefs -> (Name, StatementDef) -> [String]
writeExp noes lps (name, stmt) =

case stmt of
StatementDef funcName args ->

[ifAllowedArgs funcName args
(name ++ " " ++ funcName ++ " " ++ writeArgs noes lps args)]

DelayDef (DelayLine _ del) ->
[name ++ " delayr " ++ showExp noes lps del]

TapDef funcName _ args ->
[ifAllowedArgs funcName args

(name ++ " " ++ funcName ++ " " ++ writeArgs noes lps args)]
DelayWriteDef (DelayLine sig _) ->

["delayw " ++ showExp noes lps sig]
IndexDef _ _ -> []
MultiDef funcName args outCount ex {- ’ex’ is always a SigGen -} ->

[ifAllowedArgs funcName args
(concat (intersperse ", "

(map (\x -> showExp noes lps
(TreeTag.Branch (Index x ex)))

[1..outCount]))
++ " " ++ funcName ++ " " ++ writeArgs noes lps args)]

ifAllowedArgs :: String -> [SigFixed] -> String -> String
ifAllowedArgs funcName args str =

if allowedArgs argCountTable funcName (length args)
then str
else error ("writeExp: wrong number of arguments " ++

"passed to function " ++ funcName)

writeArgs :: StatementDefs -> LoopDefs -> [SigFixed] -> String
writeArgs noes lps =

concat . intersperse ", " . map (showExp noes lps)

Figure 13: The Function writeExp

102

showExp :: StatementDefs -> LoopDefs -> SigFixed -> String
showExp noes lps (TreeTag.Branch oe) =

case oe of
ConstFloat x -> show x
ConstInt n -> show n
TableNumber n -> show n
PField p -> "p" ++ show p
Str s -> show s
Read var -> globalRead var
Conditional b tr fa ->

"(" ++ showBool noes lps b ++ " ? "
++ showExp noes lps tr ++ " : "
++ showExp noes lps fa ++ ")"

Infix nm x1 x2 ->
"(" ++ showExp noes lps x1 ++ " " ++ nm ++ " "

++ showExp noes lps x2 ++ ")"
Prefix nm x -> nm ++ "(" ++ showExp noes lps x ++ ")"
SigGen nm _ _ args ->

lookupDef noes (StatementDef nm args) oe
Result dl -> lookupDef noes (DelayDef dl) oe
Tap nm dl args -> lookupDef noes (TapDef nm dl args) oe
Index x ex -> lookupDef noes (IndexDef x ex) oe

showExp noes lps (TreeTag.Tag _ ex) =
showExp noes lps ex

showExp _ lps (TreeTag.Loop s) =
maybe (error "loop not found") id (lookup s lps)

lookupDef :: (Show a, Eq c) => [(b, c)] -> c -> a -> b
lookupDef noes def oe =

maybe (error ("showExp " ++ show oe ++ ": constructor not found\n"))
id (lookup def (map (\(x, y) -> (y, x)) noes))

showBool :: StatementDefs -> LoopDefs -> BooleanFixed -> String
showBool noes lps bool =

case bool of
Operator name x1 x2 ->

"(" ++ showBool noes lps x1 ++ " " ++ name ++ " "
++ showBool noes lps x2 ++ ")"

Comparison name x1 x2 ->
"(" ++ showExp noes lps x1 ++ " " ++ name ++ " "

++ showExp noes lps x2 ++ ")"

Figure 14: The Function showExp

103

-> Orc a GlobalSig
mkSignal rate func = state (mkSignalPlain rate func)

addInstrPlain :: Output a => InstrBlock a -> OrcState a -> OrcState a
addInstrPlain ib (OrcState ibs gCount) =

OrcState (ibs ++ [ib]) gCount

addInstr :: Output a => InstrBlock a -> Orc a ()
addInstr ib = modify (addInstrPlain ib)

runOrc :: Orc a () -> [InstrBlock a]
runOrc comp =

case execState comp (OrcState [] 1) of
(OrcState ibs _) -> ibs

mkOrc :: Output a => Header -> Orc a () -> T a
mkOrc hdr = Cons hdr . runOrc

The user can call mkSignal to get a unique global line, or addInstr to add an instrument to the
structure. For example:

test :: IO ()
test =

let a1 = oscI AR (tableNumber 1) 1000 440
comp =

do h <- mkSignal AR (+)
addInstr (InstrBlock (instrument 1) 0 (Mono a1) [(h, a1)])
addInstr (InstrBlock (instrument 2) 0 (Mono (readGlobal h)) [])

in saveIA (mkOrc (44100, 4410) comp)

The above example has the first instrument writing a simple oscillation to the given audio-rate global
signal, and then has the second instrument reading from the same global.

An Orchestra Example Figure 15 shows a typical CSound orchestra file. Figure 16 shows how this same
functionality would be achieved in Haskore using an CSound.Orchestra.T value. Finally, Figure 17
shows the result of applying Orchestra.saveIA to orc1 shown in Figure 16. Figures 15 and 17 should
be compared: you will note that except for name changes, they are the same, as they should be.

4.3.3 Tutorial

module Haskore.Interface.CSound.Tutorial where

import Haskore.Interface.CSound.Orchestra
(SigExp, Mono(Mono), Stereo(Stereo), Output, Name,
pchToHz, dbToAmp, sigGen, rec, tableNumber, EvalRate(AR, CR),
osc, oscI, randomI, expon, reverb, vdelay, comb, lineSeg,
PluckDecayMethod(..), pluck, buzz)

import Haskore.Interface.CSound.Generator
(compSine1, compSine2, cubicSpline, lineSeg1)

import Haskore.Interface.CSound.Score as Score

104

sr = 48000
kr = 24000
ksmps = 2
nchnls = 2

instr 4

inote = cpspch(p5)

k1 envlpx ampdb(p4), .001, p3, .05, 6, -.1, .01
k2 envlpx ampdb(p4), .0005, .1, .1, 6, -.05, .01
k3 envlpx ampdb(p4), .001, p3, p3, 6, -.3, .01

a1 oscili k1, inote, 1
a2 oscili k1, inote * 1.004, 1
a3 oscili k2, inote * 16, 1
a4 oscili k3, inote, 5
a5 oscili k3, inote * 1.004, 5

outs (a2 + a3 + a4) * .75, (a1 + a3 + a5) * .75

endin

Figure 15: Sample CSound Orchestra File

orc1 :: T Stereo
orc1 =

let hdr = (48000, 24000)
inote = pchToHz p5
k1 = env CR 6 (-0.1) 0.01 0 0.05 0.001 p3 (dbToAmp p4)
k2 = env CR 6 (-0.05) 0.01 0 0.1 0.0005 0.1 (dbToAmp p4)
k3 = env CR 6 (-0.3) 0.01 0 p3 0.001 p3 (dbToAmp p4)
t1 = tableNumber 1
t5 = tableNumber 5
a1 = oscI AR t1 k1 inote
a2 = oscI AR t1 k1 (inote*1.004)
a3 = oscI AR t1 k2 (inote*16)
a4 = oscI AR t5 k3 inote
a5 = oscI AR t5 k3 (inote*1.004)
out = Stereo ((a2+a3+a4) * 0.75) ((a1+a3+a5) * 0.75)
ib = InstrBlock (instrument 4) 0 out []

in Cons hdr [ib]

test1 :: StatementDefs
test1 = extractFunctions $ mkListOut (head ((\(Cons _ x) -> x) orc1))

Figure 16: Haskore Orchestra Definition

105

sr = 48000
kr = 24000
ksmps = 2.0
nchnls = 2

instr 4
k1 envlpx ampdb(p4), 1.0e-3, p3, p3, 6.0, -(0.3), 1.0e-2, 0.0
a2 oscili k1, (cpspch(p5) * 1.004), 5
k3 envlpx ampdb(p4), 5.0e-4, 0.1, 0.1, 6.0, -(5.0e-2), 1.0e-2, 0.0
a4 oscili k3, (cpspch(p5) * 16.0), 1
k5 envlpx ampdb(p4), 1.0e-3, p3, 5.0e-2, 6.0, -(0.1), 1.0e-2, 0.0
a6 oscili k5, cpspch(p5), 1
a7 oscili k1, cpspch(p5), 5
a8 oscili k5, (cpspch(p5) * 1.004), 1
outs (((a8 + a4) + a7) * 0.75), (((a6 + a4) + a2) * 0.75)
endin

Figure 17: Result of Orchestra.saveIA orc1

import qualified Haskore.Interface.CSound.Orchestra as Orchestra
import qualified Haskore.Interface.CSound.SoundMap as SoundMap
import qualified Haskore.Interface.CSound as CSound

import qualified Haskore.Performance as Performance
import qualified Haskore.Performance.Context as Context
import qualified Haskore.Performance.Fancy as FancyPerformance

import qualified Haskore.Music as Music
import qualified Haskore.Music.Rhythmic as RhyMusic

import qualified Numeric.NonNegative.Wrapper as NonNeg

import Haskore.Basic.Duration
import Haskore.Music ((+:+), (=:=), qnr)
import Haskore.Melody as Melody

import System.Cmd (system,)
import System.Exit (ExitCode,)

This brief tutorial is designed to introduce the user to the capabilities of the CSound software synthesizer
and sound synthesis in general.

Additive Synthesis The first part of the tutorial introduces additive synthesis. Additive synthesis is the
most basic, yet the most powerful synthesis technique available, giving complete control over the sound
waveform. The basic premiss behind additive sound synthesis is quite simple – defining a complex sound
by specifying each contributing sine wave. The computer is very good at generating pure tones, but these
are not very interesting. However, any sound imaginable can be reproduced as a sum of pure tones. We
can define an instrument of pure tones easily in Haskore. First we define a Function table containing a lone

106

sine wave. We can do this using the simpleSine function defined in the module CSound.Orchestra
module:

pureToneTN :: Score.Table
pureToneTN = 1
pureToneTable :: SigExp
pureToneTable = tableNumber pureToneTN
pureTone :: Score.Statement
pureTone = Score.Table pureToneTN 0 8192 True (compSine1 [1.0])

oscPure :: SigExp -> SigExp -> SigExp
oscPure = osc AR pureToneTable

pureToneTN is the table number of the simple sine wave. We will adopt the convention in this tutorial
that variables ending with TN represent table numbers. Recall that compSine1 is defined in the module
module CSound as a sine wave generating routine (GEN10). In order to have a complete score file, we also
need a tune. Here is a simple example:

type TutMelody params = Melody.T (TutAttr params)

data TutAttr params =
TutAttr {attrVelocity :: Rational,

attrParameters :: params}

tune1 :: TutMelody ()
tune1 = Music.line (map ($ TutAttr 1.5 ())

[c 1 hn, e 1 hn, g 1 hn,
c 2 hn, a 1 hn, c 2 qn,
a 1 qn, g 1 dhn] ++ [qnr])

The next step is to convert the melody into a music. In our simple tutorial we have only one instrument per
song in all but one case. So we could skip this step, but we want to include it in order to show the general
processing steps. We use the general data type for rhythmic music, with no drum definitions (null type ())
and a custom instrument definition Instrument. We use only the instrument numbers 1 and 2 but the
numbers are associated with different sounds in the examples.

data Instrument =
Instr1p0

| Instr2p0
| Instr1p2 Float Float
| Instr1p4 Float Float Float Float

deriving (Eq, Ord, Show)

musicFromMelody :: (params -> Instrument) ->
TutMelody params -> RhyMusic.T () Instrument

musicFromMelody instr =
RhyMusic.fromMelody

(\(TutAttr vel params) -> (vel, instr params))

The melody contains instrument specific parameters. They will be embedded in Instrument values by
the following functions. These functions can be used as instr arguments to musicFromMelody.

type Pair = (Float, Float)

107

type Quadruple = (Float, Float, Float, Float)

attrToInstr1p0 :: () -> Instrument
attrToInstr1p0 () = Instr1p0

attrToInstr2p0 :: () -> Instrument
attrToInstr2p0 () = Instr2p0

attrToInstr1p2 :: Pair -> Instrument
attrToInstr1p2 = uncurry Instr1p2

attrToInstr1p4 :: Quadruple -> Instrument
attrToInstr1p4 (x,y,z,w) = Instr1p4 x y z w

There is nothing special about the conversion from the music to the performance.

performanceFromMusic :: RhyMusic.T () Instrument ->
Performance.T NonNeg.Float Float (RhyMusic.Note () Instrument)

performanceFromMusic =
FancyPerformance.fromMusicModifyContext (Context.setDur 1)

Now we convert from the performance to the CSound score. To this end we must con-
vert the instruments represented by Instrument to sound numbers and parameter fields. A
SoundMap.InstrumentTableWithAttributes out Instrument must be generated for the
conversion. The functions like instrAssoc1p0 generate one entry for the table which assigns an instru-
ment number and a sound algorithm to a constructor of Instrument.

type TutOrchestra out =
(Orchestra.Header, SoundMap.InstrumentTableWithAttributes out Instrument)

instrNum1, instrNum2 :: CSound.Instrument
instrNum1 = CSound.instrument 1
instrNum2 = CSound.instrument 2

instrAssoc1p0 :: SoundMap.InstrumentSigExp out ->
SoundMap.InstrumentAssociation out Instrument

instrAssoc1p0 =
SoundMap.instrument instrNum1

(\i -> do Instr1p0 <- Just i; Just ())

instrAssoc2p0 :: SoundMap.InstrumentSigExp out ->
SoundMap.InstrumentAssociation out Instrument

instrAssoc2p0 =
SoundMap.instrument instrNum2

(\i -> do Instr2p0 <- Just i; Just ())

instrAssoc1p2 :: (SigExp -> SigExp -> SoundMap.InstrumentSigExp out) ->
SoundMap.InstrumentAssociation out Instrument

instrAssoc1p2 =
SoundMap.instrument2 instrNum1

(\i -> do Instr1p2 x y <- Just i; Just (x,y))

instrAssoc1p4 :: (SigExp -> SigExp -> SigExp -> SigExp -> SoundMap.InstrumentSigExp out) ->
SoundMap.InstrumentAssociation out Instrument

108

instrAssoc1p4 =
SoundMap.instrument4 instrNum1

(\i -> do Instr1p4 x y z w <- Just i; Just (x,y,z,w))

The function scored puts the chain from melody to CSound score together. Finally the function
example collects music and instrument definitions, that is a complete example.

scored :: TutOrchestra out -> (params -> Instrument) ->
TutMelody params -> Score.T

scored (_,sndMap) instr =
Score.fromRhythmicPerformanceWithAttributes

(error "no drum map defined") sndMap .
performanceFromMusic .
musicFromMelody instr

example :: Name -> (TutOrchestra out -> Score.T) -> TutOrchestra out ->
(Name, Score.T, TutOrchestra out)

example name mkScore orc = (name, mkScore orc, orc)

Let’s define an instrument in the orchestra file that will use the function table pureTone:

oe1 :: SoundMap.InstrumentSigExp Mono
oe1 _noteDur noteVel notePit =

let signal = oscPure (dbToAmp noteVel) (pchToHz notePit)
in Mono signal

score1 orc = pureTone : scored orc attrToInstr1p0 tune1

This instrument will simply oscillate through the function table containing the sine wave at the appropriate
frequency given by notePit, and the resulting sound will have an amplitude given by noteVel. Note
that the oe1 expression above is a Mono, not a complete TutOrchestra. We need to define a header
and associate oe1 with the instrument that’s playing it:

hdr :: Orchestra.Header
hdr = (44100, 4410)

o1, o2, o3, o4, o7, o8, o9, o13, o14, o15, o19, o22
:: TutOrchestra Mono

o5, o6, o10, o11, o12, o16, o17, o18, o20, o21
:: TutOrchestra Stereo

tut1, tut2, tut3, tut4, tut7, tut8, tut9, tut13, tut14, tut15, tut19, tut22
:: (Name, Score.T, TutOrchestra Mono)

tut5, tut6, tut10, tut11, tut12, tut16, tut17, tut18, tut20, tut21
:: (Name, Score.T, TutOrchestra Stereo)

score1, score2, score3, score4, score5, score6, score7, score8, score9
:: TutOrchestra out -> [Score.Statement]

o1 = (hdr, [instrAssoc1p0 oe1])

The header above indicates that the audio signals are generated at 44,100 Hz (CD quality), the control signals
are generated at 4,410 Hz, and there are 2 output channels for stereo sound. Now we have a complete score
and orchestra that can be converted to a sound file by CSound and played as follows:

109

csoundDir :: Name
csoundDir = "/tmp"
-- csoundDir = "C:/TEMP/csound"

tut1 = example "tut01" score1 o1

If you listen to the tune, you will notice that it sounds very thin and uninteresting. Most musical sounds
are not pure. Instead they usually contain a sine wave of dominant frequency, called a fundamental, and
a number of other sine waves called partials. Partials with frequencies that are integer multiples of the
fundamental are called harmonics. In musical terms, the first harmonic lies an octave above the fundamental,
second harmonic a fifth above the first one, the third harmonic lies a major third above the second harmonic
etc. This is the familiar overtone series. We can add harmonics to our sine wave instrument easily using
the compSine function defined in the module CSound.Orchestra module. The function takes a list
of harmonic strengths as arguments. The following creates a function table containing the fundamental and
the first two harmonics at two thirds and one third of the strength of the fundamental:

twoHarmsTN :: Score.Table
twoHarmsTN = 2
twoHarms :: Score.Statement
twoHarms = Score.Table twoHarmsTN 0 8192 True (compSine1 [1.0, 0.66, 0.33])

We can again proceed to create complete score and orchestra files as above:

score2 orc = twoHarms : scored orc attrToInstr1p0 tune1

oe2 :: SoundMap.InstrumentSigExp Mono
oe2 _noteDur noteVel notePit =

let signal = osc AR (tableNumber twoHarmsTN)
(dbToAmp noteVel) (pchToHz notePit)

in Mono signal

o2 = (hdr, [instrAssoc1p0 oe2])

tut2 = example "tut02" score2 o2

The orchestra file is the same as before – a single oscillator scanning a function table at a given frequency
and volume. This time, however, the tune will not sound as thin as before since the table now contains a
function that is an addition of three sine waves. (Note that the same effect could be achieved using a simple
sine wave table and three oscillators). Not all musical sounds contain harmonic partials exclusively, and
never do we encounter instruments with static amplitude envelope like the ones we have seen so far. Most
sounds, musical or not, evolve and change throughout their duration. Let’s define an instrument containing
both harmonic and nonharmonic partials, that starts at maximum amplitude with a straight line decay. We
will use the function compSine2 from the module CSound.Orchestra module to create the function
table. compSine2 takes a list of triples as an argument. The triples specify the partial number as a multiple
of the fundamental, relative partial strength, and initial phase offset:

manySinesTN :: Score.Table
manySinesTN = 3
manySinesTable :: SigExp
manySinesTable = tableNumber manySinesTN

110

manySines :: Score.Statement
manySines = Score.Table manySinesTN 0 8192 True (compSine2 [(0.5, 0.9, 0.0),

(1.0, 1.0, 0.0), (1.1, 0.7, 0.0), (2.0, 0.6, 0.0),
(2.5, 0.3, 0.0), (3.0, 0.33, 0.0), (5.0, 0.2, 0.0)])

Thus this complex will contain the second, third, and fifth harmonic, nonharmonic partials at frequencies
of 1.1 and 2.5 times the fundamental, and a component at half the frequency of the fundamental. Their
strengths relative to the fundamental are given by the second argument, and they all start in sync with zero
offset. Now we can proceed as before to create score and orchestra files. We will define an amplitude
envelope to apply to each note as we oscillate through the table. The amplitude envelope will be a straight
line signal ramping from 1.0 to 0.0 over the duration of the note. This signal will be generated at control rate
rather than audio rate, because the control rate is more than sufficient (the audio signal will change volume
4,410 times a second), and the slower rate will improve performance.

score3 orc = manySines : scored orc attrToInstr1p0 tune1

lineCS :: EvalRate -> SigExp -> SigExp
-> SigExp -> SigExp

lineCS = Orchestra.line

oe3 :: SoundMap.InstrumentSigExp Mono
oe3 noteDur noteVel notePit =

let ampEnv = lineCS CR 1.0 noteDur 0.0
signal = osc AR manySinesTable

(ampEnv * dbToAmp noteVel) (pchToHz notePit)
in Mono signal

o3 = (hdr, [instrAssoc1p0 oe3])

tut3 = example "tut03" score3 o3

Not only do musical sounds usually evolve in terms of overall amplitude, they also evolve their spectra.
In other words, the contributing partials do not usually all have the same amplitude envelope, and so their
contribution to the overall sound isn’t static. Let us illustrate the point using the same set of partials as
in the above example. Instead of creating a table containing a complex waveform, however, we will use
multiple oscillators going through the simple sine wave table we created at the beginning of this tutorial
at the appropriate frequencies. Thus instead of the partials being fused together, each can have its own
amplitude envelope, making the sound evolve over time. The score will be score1, defined above.

oe4 :: SoundMap.InstrumentSigExp Mono
oe4 noteDur noteVel notePit =

let pitch = pchToHz notePit
amp = dbToAmp noteVel
mkLine t = lineSeg CR 0 (noteDur*t) 1 [(noteDur * (1-t), 0)]
aenv1 = lineCS CR 1 noteDur 0
aenv2 = mkLine 0.17
aenv3 = mkLine 0.33
aenv4 = mkLine 0.50
aenv5 = mkLine 0.67
aenv6 = mkLine 0.83
aenv7 = lineCS CR 0 noteDur 1
mkOsc ae p = oscPure (ae * amp) (pitch * p)

111

a1 = mkOsc aenv1 0.5
a2 = mkOsc aenv2 1.0
a3 = mkOsc aenv3 1.1
a4 = mkOsc aenv4 2.0
a5 = mkOsc aenv5 2.5
a6 = mkOsc aenv6 3.0
a7 = mkOsc aenv7 5.0
out = 0.5 * (a1 + a2 + a3 + a4 + a5 + a6 + a7)

in Mono out

o4 = (hdr, [instrAssoc1p0 oe4])

tut4 = example "tut04" score1 o4

So far, we have only used function tables to generate audio signals, but they can come very handy in modify-
ing signals. Let us create a function table that we can use as an amplitude envelope to make our instrument
more interesting. The envelope will contain an immediate sharp attack and decay, and then a second, more
gradual one, so we’ll have two attack/decay events per note. We’ll use the cubic spline curve generating
routine to do this:

coolEnvTN :: Score.Table
coolEnvTN = 4
coolEnvTable :: SigExp
coolEnvTable = tableNumber coolEnvTN
coolEnv :: Score.Statement
coolEnv = Score.Table coolEnvTN 0 8192 True

(cubicSpline 1 [(1692, 0.2), (3000, 1), (3500, 0)])

oscCoolEnv :: SigExp -> SigExp -> SigExp
oscCoolEnv = osc CR coolEnvTable

Let us also add some p-fields to the notes in our score. The two p-fields we add will be used for panning
– the first one will be the starting percentage of the left channel, the second one the ending percentage (1
means all left, 0 all right, 0.5 middle. Pfields of 1 and 0 will cause the note to pan completely from left to
right for example)

tune2 :: TutMelody Pair
tune2 =

let attr start end = TutAttr 1.4 (start, end)
in c 1 hn (attr 1.0 0.75) +:+

e 1 hn (attr 0.75 0.5) +:+
g 1 hn (attr 0.5 0.25) +:+
c 2 hn (attr 0.25 0.0) +:+
a 1 hn (attr 0.0 1.0) +:+
c 2 qn (attr 0.0 0.0) +:+
a 1 qn (attr 1.0 1.0) +:+

(g 1 dhn (attr 1.0 0.0) =:=
g 1 dhn (attr 0.0 1.0))+:+ qnr

So far we have limited ourselves to using only sine waves for our audio output, even though Csound places
no such restrictions on us. Any repeating waveform, of any shape, can be used to produce pitched sounds.
In essence, when we are adding sinewaves, we are changing the shape of the wave. For example, adding

112

odd harmonics to a fundamental at strengths equal to the inverse of their partial number (ie. third harmonic
would be 1/3 the strength of the fundamental, fifth harmonic 1/5 the fundamental etc) would produce a
square wave which has a raspy sound to it. Another common waveform is the sawtooth, and the more
mellow sounding triangle. The module CSound.Orchestra module already contains functions to create
these common waveforms. Let’s use them to create tables that we can use in an instrument:

triangleTN, squareTN, sawtoothTN :: Score.Table
triangleTN = 5
squareTN = 6
sawtoothTN = 7
triangleT, squareT, sawtoothT :: Score.Statement
triangleT = triangle triangleTN
squareT = square squareTN
sawtoothT = sawtooth sawtoothTN

score4 orc = squareT : triangleT : sawtoothT : coolEnv :
scored orc attrToInstr1p2 (Music.changeTempo 0.5 tune2)

oe5 :: SigExp -> SigExp -> SoundMap.InstrumentSigExp Stereo
oe5 panStart panEnd noteDur noteVel notePit =

let pitch = pchToHz notePit
amp = dbToAmp noteVel
pan = lineCS CR panStart noteDur panEnd
oscF = 1 / noteDur
ampen = oscCoolEnv amp oscF
signal = osc AR (tableNumber squareTN) ampen pitch
left = signal * pan
right = signal * (1-pan)

in Stereo left right

o5 = (hdr, [instrAssoc1p2 oe5])

tut5 = example "tut05" score4 o5

This will oscillate through a table containing the square wave. Check out the other waveforms too and see
what they sound like. This can be done by specifying the table to be used in the orchestra file. As our last
example of additive synthesis, we will introduce an orchestra with multiple instruments. The bass will be
mostly in the left channel, and will be the same as the third example instrument in this section. It will play
the tune two octaves below the instrument in the right channel, using an orchestra identical to oe3 with the
addition of the panning feature:

score5 orc = manySines : pureTone : scored orc attrToInstr1p0 tune1 ++
scored orc attrToInstr2p0 tune1

oe6 :: SoundMap.InstrumentSigExp Stereo
oe6 noteDur noteVel notePit =

let ampEnv = lineCS CR 1.0 noteDur 0.0
signal = osc AR manySinesTable

(ampEnv * dbToAmp noteVel) (pchToHz (notePit - 2))
left = 0.8 * signal
right = 0.2 * signal

in Stereo left right

oe7 :: SoundMap.InstrumentSigExp Stereo

113

oe7 noteDur noteVel notePit =
let pitch = pchToHz notePit

amp = dbToAmp noteVel
mkLine t = lineSeg CR 0 (noteDur*t) 0.5 [(noteDur * (1-t), 0)]
aenv1 = lineCS CR 0.5 noteDur 0
aenv2 = mkLine 0.17
aenv3 = mkLine 0.33
aenv4 = mkLine 0.50
aenv5 = mkLine 0.67
aenv6 = mkLine 0.83
aenv7 = lineCS CR 0 noteDur 0.5
mkOsc ae p = oscPure (ae * amp) (pitch * p)
a1 = mkOsc aenv1 0.5
a2 = mkOsc aenv2 1.0
a3 = mkOsc aenv3 1.1
a4 = mkOsc aenv4 2.0
a5 = mkOsc aenv5 2.5
a6 = mkOsc aenv6 3.0
a7 = mkOsc aenv7 5.0
left = 0.2 * (a1 + a2 + a3 + a4 + a5 + a6 + a7)
right = 0.8 * (a1 + a2 + a3 + a4 + a5 + a6 + a7)

in Stereo left right

o6 = (hdr, [instrAssoc1p0 oe6, instrAssoc2p0 oe7])

tut6 = example "tut06" score5 o6

Additive synthesis is the most powerful tool in computer music and sound synthesis in general. It can be
used to create any sound imaginable, whether completely synthetic or a simulation of a real-world sound,
and everyone interested in using the computer to synthesize sound should be well versed in it. The most
significant drawback of additive synthesis is that it requires huge amounts of control data, and potentially
thousands of oscillators. There are other synthesis techniques, such as modulation synthesis, that can be
used to create rich and interesting timbres at a fraction of the cost of additive synthesis, though no other
synthesis technique provides quite the same degree of control.

Modulation Synthesis While additive synthesis provides full control and great flexibility, it is quiet clear
that the enormous amounts of control data make it impractical for even moderately complicated sounds.
There is a class of synthesis techniques that use modulation to produce rich, time-varying timbres at a
fraction of the storage and time cost of additive synthesis. The basic idea behind modulation synthesis
is controlling the amplitude and/or frequency of the main periodic signal, called the carrier, by another
periodic signal, called the modulator. The two main kinds of modulation synthesis are amplitude modulation
and frequency modulation synthesis. Let’s start our discussion with the simpler one of the two – amplitude
synthesis. We have already shown how to supply a time varying amplitude envelope to an oscillator. What
would happen if this amplitude envelope was itself an oscillating signal? Supplying a low frequency (<
20Hz) modulating signal would create a predictable effect – we would hear the volume of the carrier signal
go periodically up and down. However, as the modulator moves into the audible frequency range, the carrier
changes timbre as new frequencies appear in the spectrum. The new frequencies are equal to the sum and
difference of the carrier and modulator. So for example, if the frequency of the main signal (carrier) is C
= 500Hz, and the frequency of the modulator is M = 100Hz, the audible frequencies will be the carrier

114

C (500Hz), C + M (600Hz), and C - M (400Hz). The amplitude of the two new sidebands depends on the
amplitude of the modulator, but will never exceed half the amplitude of the carrier. The following is a simple
example that demonstrates amplitude modulation. The carrier will be a 10 second pure tone at 500Hz. The
frequency of the modulator will increase linearly over the 10 second duration of the tone from 0 to 200 Hz.
Initially, you will be able to hear the volume of the signal fluctuate, but after a couple of seconds the volume
will seem constant as new frequencies appear. Let us first create the score file. It will contain a sine wave
table, and a single note event:

score6 _ =
pureTone : [Score.Note instrNum1 0.0 10.0 (Cps 500.0) 10000.0 []]

The orchestra will contain a single AM instrument. The carrier will simply oscillate through the sine wave
table at frequency given by the note pitch (500Hz, see the score above), and amplitude given by the modu-
lator. The modulator will oscillate through the same sine wave table at frequency ramping from 0 to 200Hz.
The modulator should be a periodic signal that varies from 0 to the maximum volume of the carrier. Since
the sine wave goes from -1 to 1, we will need to add 1 to it and half it, before multiplying it by the volume
supplied by the note event. This will be the modulating signal, and the carrier’s amplitude input. (note that
we omit the conversion functions dbToAmp and notePit, since we supply the amplitude and frequency in
their raw units in the score file)

oe8 :: SoundMap.InstrumentSigExp Mono
oe8 noteDur noteVel notePit =

let modFreq = lineCS CR 0.0 noteDur 200.0
modAmp = oscPure 1.0 modFreq
modSig = (modAmp + 1.0) * 0.5 * noteVel
carrier = oscPure modSig notePit

in Mono carrier

o7 = (hdr, [instrAssoc1p0 oe8])

tut7 = example "tut07" score6 o7

Next synthesis technique on the palette is frequency modulation. As the name suggests, we modulate the
frequency of the carrier. Frequency modulation is much more powerful and interesting than amplitude
modulation, because instead of getting two sidebands, FM gives a number of spectral sidebands. Let us
begin with an example of a simple FM. We will again use a single 10 second note and a 500Hz carrier.
Remember that when we talked about amplitude modulation, the amplitude of the sidebands was dependent
upon the amplitude of the modulator. In FM, the modulator amplitude plays a much bigger role, as we will
see soon. To negate the effect of the modulator amplitude, we will keep the ratio of the modulator amplitude
and frequency constant at 1.0 (we will explain shortly why). The frequency and amplitude of the modulator
will ramp from 0 to 200 over the duration of the note. This time, though, unlike with AM, we will hear
a whole series of sidebands. The orchestra is just as before, except we modulate the frequency instead of
amplitude.

oe9 :: SoundMap.InstrumentSigExp Mono
oe9 noteDur noteVel notePit =

let modFreq = lineCS CR 0.0 noteDur 200.0
modAmp = modFreq
modSig = oscPure modAmp modFreq
carrier = oscPure noteVel (notePit + modSig)

115

in Mono carrier

o8 = (hdr, [instrAssoc1p0 oe9])

tut8 = example "tut08" score6 o8

The sound produced by FM is a little richer but still very bland. Let us talk now about the role of the
depth of the frequency modulation (the amplitude of the modulator). Unlike in AM, where we only had
one spectral band on each side of the carrier frequency (ie we heard C, C+M, C-M), FM gives a much
richer spectrum with many sidebands. The frequencies we hear are C, C+M, C-M, C+2M, C-2M, C+3M,
C-3M etc. The amplitudes of the sidebands are determined by the modulation index I, which is the ratio
between the amplitude (also referred to as depth) and frequency of the modulator (I = D / M). As a rule of
thumb, the number of significant sideband pairs (at least 1number of sidebands) increases, energy is "stolen"
from the carrier and distributed among the sidebands. Thus if I=1, we have 2 significant sideband pairs,
and the audible frequencies will be C, C+M, C-M, C+2M, C-2M, with C, the carrier, being the dominant
frequency. When I=5, we will have a much richer sound with about 6 significant sideband pairs, some
of which will actually be louder than the carrier. Let us explore the effect of the modulation index in the
following example. We will keep the frequency of the carrier and the modulator constant at 500Hz and 80
Hz respectively. The modulation index will be a stepwise function from 1 to 10, holding each value for one
second. So in effect, during the first second (I = D/M = 1), the amplitude of the modulator will be the same
as its frequency (80). During the second second (I = 2), the amplitude will be double the frequency (160),
then it will go to 240, 320, etc:

oe10 :: SoundMap.InstrumentSigExp Mono
oe10 _noteDur noteVel notePit =

let modInd = lineSeg CR 1 1 1 [(0,2), (1,2), (0,3), (1,3), (0,4),
(1,4), (0,5), (1,5), (0,6), (1,6),
(0,7), (1,7), (0,8), (0,9), (1,9),
(0,10), (1,10)]

modAmp = 80.0 * modInd
modSig = oscPure modAmp 80.0
carrier = oscPure noteVel (notePit + modSig)

in Mono carrier

o9 = (hdr, [instrAssoc1p0 oe10])

tut9 = example "tut09" score6 o9

Notice that when the modulation index gets high enough, some of the sidebands have negative frequencies.
For example, when the modulation index is 7, there is a sideband present in the sound with a frequency C -
7M = 500 - 560 = -60Hz. The negative sidebands get reflected back into the audible spectrum but are phase
shifted 180 degrees, so it is an inverse sine wave. This makes no difference when the wave is on its own,
but when we add it to its inverse, the two will cancel out. Say we set the frequency of the carrier at 100Hz
instead of 80Hz. Then at I=6, we would have present two sidebands of the same frequency - C-4M = 100Hz,
and C-6M = -100Hz. When these two are added, they would cancel each other out (if they were the same
amplitude; if not, the louder one would be attenuated by the amplitude of the softer one). The following
flexible instrument will sum up simple FM. The frequency of the modulator will be determined by the C/M
ratio supplied as p6 in the score file. The modulation index will be a linear slope going from 0 to p7 over
the duration of each note. Let us also add panning control as in additive synthesis - p8 will be the initial left

116

channel percentage, and p9 the final left channel percentage:

oe11 :: SigExp -> SigExp -> SigExp -> SigExp -> SoundMap.InstrumentSigExp Stereo
oe11 modFreqRatio modIndEnd panStart panEnd noteDur noteVel notePit =

let carFreq = pchToHz notePit
carAmp = dbToAmp noteVel
modFreq = carFreq * modFreqRatio
modInd = lineCS CR 0 noteDur modIndEnd
modAmp = modFreq * modInd
modSig = oscPure modAmp modFreq
carrier = oscPure carAmp (carFreq + modSig)
mainAmp = oscCoolEnv 1.0 (1/noteDur)
pan = lineCS CR panStart noteDur panEnd
left = mainAmp * pan * carrier
right = mainAmp * (1 - pan) * carrier

in Stereo left right

o10 = (hdr, [instrAssoc1p4 oe11])

Let’s write a cool tune to show off this instrument. Let’s keep it simple and play the chord progression Em
- C - G - D a few times, each time changing some of the parameters:

emChord, cChord, gChord, dChord ::
Float -> Float -> Float -> Float ->

TutMelody Quadruple

quickChord ::
[Music.Dur -> TutAttr Quadruple -> TutMelody Quadruple] ->
Float -> Float -> Float -> Float ->

TutMelody Quadruple
quickChord ns x y z w = Music.chord $

map (\p -> p wn (TutAttr 1.4 (x, y, z, w))) ns

emChord = quickChord [e 0, g 0, b 0]
cChord = quickChord [c 0, e 0, g 0]
gChord = quickChord [g 0, b 0, d 1]
dChord = quickChord [d 0, fs 0, a 0]

tune3 :: TutMelody Quadruple
tune3 =

Music.transpose (-12) $
emChord 3.0 2.0 0.0 1.0 +:+ cChord 3.0 5.0 1.0 0.0 +:+
gChord 3.0 8.0 0.0 1.0 +:+ dChord 3.0 12.0 1.0 0.0 +:+
emChord 3.0 4.0 0.0 0.5 +:+ cChord 5.0 4.0 0.5 1.0 +:+
gChord 8.0 4.0 1.0 0.5 +:+ dChord 10.0 4.0 0.5 0.0 +:+
(emChord 4.0 6.0 1.0 0.0 =:= emChord 7.0 5.0 0.0 1.0) +:+
(cChord 5.0 9.0 1.0 0.0 =:= cChord 9.0 5.0 0.0 1.0) +:+
(gChord 5.0 5.0 1.0 0.0 =:= gChord 7.0 7.0 0.0 1.0) +:+
(dChord 2.0 3.0 1.0 0.0 =:= dChord 7.0 15.0 0.0 1.0)

Now we can create a score. It will contain two wave tables – one containing the sine wave, and the other
containing an amplitude envelope, which will be the table coolEnv which we have already seen before

score7 orc = pureTone : coolEnv :
scored orc attrToInstr1p4 (Music.changeTempo 0.5 tune3)

117

tut10 = example "tut10" score7 o10

Note that all of the above examples of frequency modulation use a single carrier and a single modulator, and
both are oscillating through the simplest of waveforms – a sine wave. Already we have achieved some very
rich and interesting timbres using this simple technique, but the possibilities are unlimited when we start
using different carrier and modulator waveshapes and multiple carriers and/or modulators. Let us include
a couple more examples that will play the same chord progression as above with multiple carriers, and
then with multiple modulators. The reason for using multiple carriers is to obtain /em formant regions in
the spectrum of the sound. Recall that when we modulate a carrier frequency we get a spectrum with a
central peak and a number of sidebands on either side of it. Multiple carriers introduce additional peaks and
sidebands into the composite spectrum of the resulting sound. These extra peaks are called formant regions,
and are characteristic of human voice and most musical instruments

oe12 :: SigExp -> SigExp -> SigExp -> SigExp -> SoundMap.InstrumentSigExp Stereo
oe12 modFreqRatio modIndEnd panStart panEnd noteDur noteVel notePit =

let car1Freq = pchToHz notePit
car2Freq = pchToHz (notePit + 1)
car1Amp = dbToAmp noteVel
car2Amp = dbToAmp noteVel * 0.7
modFreq = car1Freq * modFreqRatio
modInd = lineCS CR 0 noteDur modIndEnd
modAmp = modFreq * modInd
modSig = oscPure modAmp modFreq
carrier1 = oscPure car1Amp (car1Freq + modSig)
carrier2 = oscPure car2Amp (car2Freq + modSig)
mainAmp = oscCoolEnv 1.0 (1/noteDur)
pan = lineCS CR panStart noteDur panEnd
left = mainAmp * pan * (carrier1 + carrier2)
right = mainAmp * (1 - pan) * (carrier1 + carrier2)

in Stereo left right

o11 = (hdr, [instrAssoc1p4 oe12])

tut11 = example "tut11" score7 o11

In the above example, there are two formant regions – one is centered around the note pitch frequency
provided by the score file, the other an octave above. Both are modulated in the same way by the same
modulator. The sound is even richer than that obtained by simple FM. Let us now turn to multiple modulator
FM. In this case, we use a signal to modify another signal, and the modified signal will itself become a
modulator acting on the carrier. Thus the wave that wil be modulating the carrier is not a sine wave as
above, but is itself a complex waveform resulting from simple FM. The spectrum of the sound will contain
a central peak frequency, surrounded by a number of sidebands, but this time each sideband will itself also
by surrounded by a number of sidebands of its own. So in effect we are talking about "double" modulation,
where each sideband is a central peak in its own little spectrum. Multiple modulator FM thus provides
extremely rich spectra

oe13 :: SigExp -> SigExp -> SigExp -> SigExp -> SoundMap.InstrumentSigExp Stereo
oe13 modFreqRatio modIndEnd panStart panEnd noteDur noteVel notePit =

let carFreq = pchToHz notePit
carAmp = dbToAmp noteVel

118

mod1Freq = carFreq * modFreqRatio
mod2Freq = mod1Freq * 2.0
modInd = lineCS CR 0 noteDur modIndEnd
mod1Amp = mod1Freq * modInd
mod2Amp = mod1Amp * 3.0
mod1Sig = oscPure mod1Amp mod1Freq
mod2Sig = oscPure mod2Amp (mod2Freq + mod1Sig)
carrier = oscPure carAmp (carFreq + mod2Sig)
mainAmp = oscCoolEnv 1.0 (1/noteDur)
pan = lineCS CR panStart noteDur panEnd
left = mainAmp * pan * carrier
right = mainAmp * (1 - pan) * carrier

in Stereo left right

o12 = (hdr, [instrAssoc1p4 oe13])

tut12 = example "tut12" score7 o12

In fact, the spectra produced by multiple modulator FM are so rich and complicated that even the moderate
values used as arguments in our tune produce spectra that are saturated and otherworldly. And we did this
while keeping the ratios of the two modulators frequencies and amplitudes constant; introducing dynamics
in those ratios would produce even crazier results. It is quite amazing that from three simple sine waves, the
purest of all tones, we can derive an unlimited number of timbres. Modulation synthesis is a very powerful
tool and understanding how to use it can prove invaluable. The best way to learn how to use FM effectively
is to dabble and experiment with different ratios, formant regions, dynamic relationships betweeen ratios,
waveshapes, etc. The possibilities are limitless.

Other Capabilities Of CSound In our examples of additive and modulation synthesis we only used a
limited number of functions and routines provided us by CSound, such as Osc (oscillator), Line and LineSig
(line and line segment signal generators) etc. This tutorial intends to briefly explain the functionality of
some of the other features of CSound. Remember that the CSound manual should be the ultimate reference
when it comes to using these functions. Let us start with the two functions buzz and genBuzz. These
functions will produce a set of harmonically related cosines. Thus they really implement simple additive
synthesis, except that the number of partials can be varied dynamically through the duration of the note,
rather than staying fixed as in simple additive synthesis. As an example, let us perform the tune defined
at the very beginning of the tutorial using an instrument that will play each note by starting off with the
fundamental and 70 harmonics, and ending with simply the sine wave fundamental (note that cosine and
sine waves sound the same). We will use a straight line signal going from 70 to 0 over the duration of each
note for the number of harmonics. The score used will be score1, and the orchestra will be:

oe14 :: SoundMap.InstrumentSigExp Mono
oe14 noteDur noteVel notePit =

let numharms = lineCS CR 70 noteDur 0
signal = buzz pureToneTable numharms

(dbToAmp noteVel) (pchToHz notePit)
in Mono signal

o13 = (hdr, [instrAssoc1p0 oe14])

tut13 = example "tut13" score1 o13

119

Let’s invert the line of the harmonics, and instead of going from 70 to 0, make it go from 0 to 70. This will
produce an interesting effect quite different from the one just heard:

oe15 :: SoundMap.InstrumentSigExp Mono
oe15 noteDur noteVel notePit =

let numharms = lineCS CR 0 noteDur 70
signal = buzz pureToneTable numharms

(dbToAmp noteVel) (pchToHz notePit)
in Mono signal

o14 = (hdr, [instrAssoc1p0 oe15])

tut14 = example "tut14" score1 o14

The buzz expression takes the overall amplitude, fundamental frequency, number of partials, and a sine
wave table and generates a wave complex. In recent years there has been a lot of research conducted in
the area of physical modelling. This technique attempts to approximate the sound of real world musical
instruments through mathematical models. One of the most widespread, versatile and interesting of these
models is the Karplus-Strong algorithm that simulates the sound of a plucked string. The algorithm starts
off with a buffer containing a user-determined waveform. On every pass, the waveform is "smoothed out"
and flattened by the algorithm to simulate the decay. There is a certain degree of randomness involved to
make the string sound more natural. There are six different "smoothing methods" available in CSound,
as mentioned in the CSound module. The pluck constructor accepts the note volume, pitch, the table
number that is used to initialize the buffer, the smoothing method used, and two parameters that depend on
the smoothing method. If zero is given as the initializing table number, the buffer starts off containing a
random waveform (white noise). This is the best table when simulating a string instrument because of the
randomness and percussive attack it produces when used with this algorithm, but you should experiment
with other waveforms as well. Here is an example of what Pluck sounds like with a white noise buffer and
the simple smoothing method. This method ignores the parameters, which we set to zero.

oe16 :: SoundMap.InstrumentSigExp Mono
oe16 _noteDur noteVel notePit =

let signal = pluck 0 (pchToHz notePit)
PluckSimpleSmooth
(dbToAmp noteVel) (pchToHz notePit)

in Mono signal

o15 = (hdr, [instrAssoc1p0 oe16])

tut15 = example "tut15" score1 o15

The second smoothing method is the stretched smooth, which works like the simple smooth above, except
that the smoothing process is stretched by a factor determined by the first parameter. The second parameter
is ignored. The third smoothing method is the snare drum method. The first parameter is the "roughness"
parameter, with 0 resulting in a sound identical to simple smooth, 0.5 being the perfect snare drum, and 1.0
being the same as simple smooth again with reversed polarity (like a graph flipped around the x-axis). The
fourth smoothing method is the stretched drum method which combines the roughness and stretch factors –
the first parameter is the roughness, the second is the stretch. The fifth method is weighted average – it com-
bines the current sample (ie. the current pass through the buffer) with the previous one, with their weights
being determined by the parameters. This is a way to add slight reverb to the plucked sound. Finally, the

120

last method filters the sound so it doesn’t sound as bright. The parameters are ignored. You can modify the
instrument oe16 easily to listen to all these effects by simply replacing the variable simpleSmooth
by stretchSmooth, simpleDrum, stretchDrum, weightedSmooth or filterSmooth.
Here is another simple instrument example. This combines a snare drum sound with a stretched plucked
string sound. The snare drum as a constant amplitude, while we apply an amplitude envelope to the string
sound. The envelope is a spline curve with a hump in the middle, so both the attack and decay are gradual.
The drum roughness factor is 0.3, so a pitch is still discernible (with a factor of 0.5 we would get a snare
drum sound with no pitch, just a puff of white noise). The drum sound is shifted towards the left channel,
while the string sound is shifted towards the right.

midHumpTN :: Score.Table
midHumpTN = 8
midHump :: Score.Statement
midHump = Score.Table midHumpTN 0 8192 True

(cubicSpline 0.0 [(4096, 1.0), (4096, 0.0)])

score8 orc = pureTone : midHump : scored orc attrToInstr1p0 tune1

oe17 :: SoundMap.InstrumentSigExp Stereo
oe17 noteDur noteVel notePit =

let string = pluck 0 (pchToHz notePit)
(PluckStretchSmooth 1.5)
(dbToAmp noteVel) (pchToHz notePit)

drum = pluck 0 (pchToHz notePit)
(PluckSimpleDrum 0.3)
6000 (pchToHz notePit)

ampEnv = osc CR (tableNumber midHumpTN) 1.0 (1 / noteDur)
left = (0.65 * drum) + (0.35 * ampEnv * string)
right = (0.35 * drum) + (0.65 * ampEnv * string)

in Stereo left right

o16 = (hdr, [instrAssoc1p0 oe17])

tut16 = example "tut16" score8 o16

Let us now turn our attention to the effects we can achieve using a delay line. Let’s define a simple
percussive instrument. It’s strong attack let us easily perceive the reverberation.

ping :: SigExp -> SigExp -> SigExp
ping noteVel notePit =

let ampEnv = expon CR 1.0 1.0 (1/100)
in osc AR manySinesTable

(ampEnv * dbToAmp noteVel) (pchToHz notePit)

There is still the problem, that subsequent notes truncate preceding ones. This would suppress the reverb.
In order to avoid this we add a legato effect to the music. That is we prolong the notes such that they overlap.

score9 orc = manySines : scored orc attrToInstr1p0 (Music.legato 1 tune1)

Here we take the ping sound and add a little echo to it using delay:

oe18 :: SoundMap.InstrumentSigExp Stereo
oe18 _noteDur noteVel notePit =

121

let ping’ = ping noteVel notePit
dping1 = Orchestra.delay 0.05 ping’
dping2 = Orchestra.delay 0.1 ping’
left = (0.65 * ping’) + (0.35 * dping2) + (0.5 * dping1)
right = (0.35 * ping’) + (0.65 * dping2) + (0.5 * dping1)

in Stereo left right

o17 = (hdr, [instrAssoc1p0 oe18])

tut17 = example "tut17" score9 o17

The constructor delay establishes a delay line. A delay line is essentially a buffer that contains the signal
to be delayed. The first argument to the delay constructor is the length of the delay (which determines
the size of the buffer), and the second argument is the signal to be delayed. So for example, if the delay
time is 1.0 seconds, and the sampling rate is 44,100 Hz (CD quality), then the delay line will be a buffer
containing 44,100 samples of the delayed signal. The buffer is rewritten at the audio rate. Once Delay t
sig writes t seconds of the signal sig into the buffer, the buffer can be tapped using the delTap or the
delTapI constructors. delTap t dline will extract the signal from dline at time t seconds. In the
exmaple above, we set up a delay line containing 0.1 seconds of the audio signal, then we tapped it twice
– once at 0.05 seconds and once at 0.1 seconds. The output signal is a combination of the original signal
(left channel), the signal delayed by 0.05 seconds (middle), and the signal delayed by 0.1 seconds (right
channel). CSound provides other ways to reverberate a signal besides the delay line just demonstrated. One
such way is achieved via the Reverb constructor introduced in the module CSound.Orchestra module.
This constructor tries to emulate natural room reverb, and takes as arguments the signal to be reverberated,
and the reverb time in seconds. This is the time it takes the signal to decay to 1/1000 its original amplitude.
In this example we output both the original and the reverberated sound.

oe19 :: SoundMap.InstrumentSigExp Stereo
oe19 _noteDur noteVel notePit =

let ping’ = ping noteVel notePit
rev = reverb 0.3 ping’
left = (0.65 * ping’) + (0.35 * rev)
right = (0.35 * ping’) + (0.65 * rev)

in Stereo left right

o18 = (hdr, [instrAssoc1p0 oe19])

tut18 = example "tut18" score9 o18

The other two reverb functions are comb and alpass. Each of these requires as arguments the signal
to be reverberated, the reverb time as above, and echo loop density in seconds. Here is an example of an
instrument using comb.

oe20 :: SoundMap.InstrumentSigExp Mono
oe20 _noteDur noteVel notePit =

Mono (comb 0.22 4.0 (ping noteVel notePit))

o19 = (hdr, [instrAssoc1p0 oe20])

tut19 = example "tut19" score9 o19

122

Delay lines can be used for effects other than simple echo and reverberation. Once the delay line has been
established, it can be tapped at times that vary at control or audio rates. This can be taken advantage of to
produce effects like chorus, flanger, or the Doppler effect. Here is an example of the flanger effect. This
instrument adds a slight flange to oe11.

oe21 :: SigExp -> SigExp -> SigExp -> SigExp -> SoundMap.InstrumentSigExp Stereo
oe21 modFreqRatio modIndEnd panStart panEnd noteDur noteVel notePit =

let carFreq = pchToHz notePit
ampEnv = oscCoolEnv 1.0 (1/noteDur)
carAmp = dbToAmp noteVel * ampEnv
modFreq = carFreq * modFreqRatio
modInd = lineCS CR 0 noteDur modIndEnd
modAmp = modFreq * modInd
modSig = oscPure modAmp modFreq
carrier = oscPure carAmp (carFreq + modSig)
ftime = oscPure (1/10) 2
flanger = ampEnv * vdelay 1 (0.5 + ftime) carrier
signal = carrier + flanger
pan = lineCS CR panStart noteDur panEnd
left = pan * signal
right = (1 - pan) * signal

in Stereo left right

o20 = (hdr, [instrAssoc1p4 oe21])

tut20 = example "tut20" score7 o20

The last two examples use generic delay lines. That is we do not rely on special echo effects but build
our own ones by delaying a signal, filtering it by low pass or high pass filters and feeding the result back to
the delay function.

lowPass, highPass :: EvalRate -> SigExp -> SigExp -> SigExp
lowPass rate cutOff sig = sigGen "tone" rate 1 [sig, cutOff]
highPass rate cutOff sig = sigGen "atone" rate 1 [sig, cutOff]

oe22 :: SoundMap.InstrumentSigExp Stereo
oe22 _noteDur noteVel notePit =

let ping’ = ping noteVel notePit
left = rec (\x -> ping’ + lowPass AR 500 (Orchestra.delay 0.311 x))
right = rec (\x -> ping’ + highPass AR 1000 (Orchestra.delay 0.271 x))

in Stereo left right

o21 = (hdr, [instrAssoc1p0 oe22])

tut21 = example "tut21" score9 o21

oe23 :: SoundMap.InstrumentSigExp Mono
oe23 _noteDur noteVel notePit =

let ping’ = ping noteVel notePit
rev = rec (\x -> ping’ +

0.7 * (lowPass AR 500 (Orchestra.delay 0.311 x)
+ highPass AR 1000 (Orchestra.delay 0.271 x)))

in Mono rev

o22 = (hdr, [instrAssoc1p0 oe23])

123

tut22 = example "tut22" score9 o22

This completes our discussion of sound synthesis and Csound. For more information, please consult the
CSound manual or check out

http://mitpress.mit.edu/e-books/csound/frontpage.html

The function applyOutFunc applies sound expression function to the expressions which represent
the parameter fields from 6 on. These are the fields where the additional instrument parameters are put by
CSound.Score.statementToWords.

test :: Output out => (Name, Score.T, TutOrchestra out) -> IO ExitCode
test = play csoundDir

toOrchestra :: Output out => TutOrchestra out -> Orchestra.T out
toOrchestra (hd, instrs) =

Orchestra.Cons hd (SoundMap.instrumentTableToInstrBlocks instrs)

play :: Output out =>
FilePath -> (Name, Score.T, TutOrchestra out) -> IO ExitCode

play dir (name, s, o’) =
let scorename = name ++ ".sco"

orchname = name ++ ".orc"
-- wavename = name ++ ".wav"

o = toOrchestra o’
-- (Orchestra.Cons (rate, _) _) = o

in do writeFile (dir++"/"++scorename) (Score.toString s)
writeFile (dir++"/"++orchname) (Orchestra.toString o)

{-
system ("cd "++dir++" ; csound -d -W -o "

++ wavename ++ " " ++ orchname ++ " " ++ scorename
++ " ; play " ++ wavename)

-}
system ("cd "++dir++" ; csound -d -A -o stdout -s "

++ orchname ++ " " ++ scorename
++ " | play -t aiff -")

{-
system ("cd "++dir++" ; csound -d -o stdout -s "

++ orchname ++ " " ++ scorename
++ " | play -r " ++ show rate ++ " -t sw -")

-}
{-

system ("cd "++dir++" ; csound -d -o dac " -- /dev/dsp makes some chaotic noise
++ orchname ++ " " ++ scorename)

-}
{-

system (dir ++ "/csound.exe -W -o " ++ wavename
++ " " ++ orchname ++ " " ++ scorename)

-}

Here are some bonus instruments for your pleasure and enjoyment. The first ten instruments are lifted
from

124

http://mitpress.mit.edu/e-books/csound/frontpage.html

http://wings.buffalo.edu/academic/department/AandL/music/pub/accci/
01/01_01_1b.txt.html

The tutorial explains how to add echo/reverb and other effects to the instruments if you need to. This
instrument sounds like an electric piano and is really simple – pianoEnv sets the amplitude envelope, and
the sound waveform is just a series of 10 harmonics. To make the sound brighter, increase the weight of the
upper harmonics.

piano, reedy, flute
:: (Name, Score.T, TutOrchestra Mono)

pianoOrc, reedyOrc, fluteOrc
:: TutOrchestra Mono

pianoScore, reedyScore, fluteScore :: TutOrchestra out -> Score.T
pianoEnv, reedyEnv, fluteEnv,

pianoWave, reedyWave, fluteWave :: Score.Statement
pianoEnvTN, reedyEnvTN, fluteEnvTN,

pianoWaveTN, reedyWaveTN, fluteWaveTN :: Score.Table
pianoEnvTable, reedyEnvTable, fluteEnvTable,

pianoWaveTable, reedyWaveTable, fluteWaveTable :: SigExp

pianoEnvTN = 10; pianoEnvTable = tableNumber pianoEnvTN
pianoWaveTN = 11; pianoWaveTable = tableNumber pianoWaveTN

pianoEnv = Score.Table pianoEnvTN 0 1024 True (lineSeg1 0 [(20, 0.99),
(380, 0.4), (400, 0.2), (224, 0)])

pianoWave = Score.Table pianoWaveTN 0 1024 True (compSine1 [0.158, 0.316,
1.0, 1.0, 0.282, 0.112, 0.063, 0.079, 0.126, 0.071])

pianoScore orc = pianoEnv : pianoWave : scored orc attrToInstr1p0 tune1

pianoOE :: SoundMap.InstrumentSigExp Mono
pianoOE noteDur noteVel notePit =

let ampEnv = osc CR pianoEnvTable (dbToAmp noteVel) (1/noteDur)
signal = osc AR pianoWaveTable ampEnv (pchToHz notePit)

in Mono signal

pianoOrc = (hdr, [instrAssoc1p0 pianoOE])

piano = example "piano" pianoScore pianoOrc

Here is another instrument with a reedy sound to it

reedyEnvTN = 12; reedyEnvTable = tableNumber reedyEnvTN
reedyWaveTN = 13; reedyWaveTable = tableNumber reedyWaveTN

reedyEnv = Score.Table reedyEnvTN 0 1024 True (lineSeg1 0 [(172, 1.0),
(170, 0.8), (170, 0.6), (170, 0.7), (170, 0.6), (172,0)])

reedyWave = Score.Table reedyWaveTN 0 1024 True (compSine1 [0.4, 0.3,
0.35, 0.5, 0.1, 0.2, 0.15, 0.0, 0.02, 0.05, 0.03])

reedyScore orc = reedyEnv : reedyWave : scored orc attrToInstr1p0 tune1

reedyOE :: SoundMap.InstrumentSigExp Mono

125

http://wings.buffalo.edu/academic/department/AandL/music/pub/accci/01/01_01_1b.txt.html
http://wings.buffalo.edu/academic/department/AandL/music/pub/accci/01/01_01_1b.txt.html

reedyOE noteDur noteVel notePit =
let ampEnv = osc CR reedyEnvTable (dbToAmp noteVel) (1/noteDur)

signal = osc AR reedyWaveTable ampEnv (pchToHz notePit)
in Mono signal

reedyOrc = (hdr, [instrAssoc1p0 reedyOE])

reedy = example "reedy" reedyScore reedyOrc

We can use a little trick to make it sound like several reeds playing by adding three signals that are
slightly out of tune:

reedy2OE :: SoundMap.InstrumentSigExp Stereo
reedy2OE noteDur noteVel notePit =

let ampEnv = osc CR reedyEnvTable (dbToAmp noteVel) (1/noteDur)
freq = pchToHz notePit
reedyOsc = osc AR reedyWaveTable
a1 = reedyOsc ampEnv freq
a2 = reedyOsc (ampEnv * 0.44) (freq + (0.023 * freq))
a3 = reedyOsc (ampEnv * 0.26) (freq + (0.019 * freq))
left = (a1 * 0.5) + (a2 * 0.35) + (a3 * 0.65)
right = (a1 * 0.5) + (a2 * 0.65) + (a3 * 0.35)

in Stereo left right

reedy2Orc :: TutOrchestra Stereo
reedy2Orc = (hdr, [instrAssoc1p0 reedy2OE])

reedy2 :: (Name, Score.T, TutOrchestra Stereo)
reedy2 = example "reedy2" reedyScore reedy2Orc

This instrument tries to emulate a flute sound by introducing random variations to the amplitude enve-
lope. The score file passes in two parameters – the first one is the depth of the random tremolo in percent
of total amplitude. The tremolo is implemented using the randomI function, which generates a signal that
interpolates between 2 random numbers over a certain number of samples that is specified by the second
parameter.

fluteTune :: TutMelody Pair

fluteTune = Music.line
(map ($ TutAttr 1.6 (30, 40))

[c 1 hn, e 1 hn, g 1 hn, c 2 hn,
a 1 hn, c 2 qn, a 1 qn, g 1 dhn]

++ [qnr])

fluteEnvTN = 14; fluteEnvTable = tableNumber fluteEnvTN
fluteWaveTN = 15; fluteWaveTable = tableNumber fluteWaveTN

fluteEnv = Score.Table fluteEnvTN 0 1024 True (lineSeg1 0 [(100, 0.8),
(200, 0.9), (100, 0.7), (300, 0.2), (324, 0.0)])

fluteWave = Score.Table fluteWaveTN 0 1024 True (compSine1 [1.0, 0.4,
0.2, 0.1, 0.1, 0.05])

fluteScore orc = fluteEnv : fluteWave : scored orc attrToInstr1p2 fluteTune

126

fluteOE :: SigExp -> SigExp -> SoundMap.InstrumentSigExp Mono
fluteOE depth numSam noteDur noteVel notePit =

let vol = dbToAmp noteVel
rand = randomI AR numSam (vol/100 * depth)
ampEnv = oscI AR fluteEnvTable

(rand + vol) (1 / noteDur)
signal = oscI AR fluteWaveTable

ampEnv (pchToHz notePit)
in Mono signal

fluteOrc = (hdr, [instrAssoc1p2 fluteOE])

flute = example "flute" fluteScore fluteOrc

Dirty hacks are going on here in order to pass the Phoneme values through all functions.

voice’ :: SigExp -> SigExp -> SigExp -> SigExp ->
SigExp -> SigExp -> SigExp -> SigExp -> SigExp

voice’ vibWave wave gain vibAmp vibFreq amp freq phoneme =
sigGen "voice" AR 1

[amp, freq, phoneme, gain, vibFreq, vibAmp, wave, vibWave]

data Phoneme =
Eee | Ihh | Ehh | Aaa |
Ahh | Aww | Ohh | Uhh |
Uuu | Ooo | Rrr | Lll |
Mmm | Nnn | Nng | Ngg |
Fff | Sss | Thh | Shh |
Xxx | Hee | Hoo | Hah |
Bbb | Ddd | Jjj | Ggg |
Vvv | Zzz | Thz | Zhh

deriving (Show, Eq, Ord, Enum)

voiceTune :: TutMelody Pair
voiceTune = Music.line

(map (\(n,ph) ->
n (TutAttr 1 (fromIntegral (fromEnum ph), 2)))

[(c 1 hn, Aaa), (e 1 hn, Ehh), (g 1 hn, Ohh), (c 2 hn, Ehh),
(a 1 hn, Eee), (c 2 qn, Aww), (a 1 qn, Aww), (g 1 dhn, Aaa)]

++ [qnr])

voiceVibWaveTN, voiceWaveTN :: Score.Table
voiceVibWaveTable, voiceWaveTable :: SigExp
voiceVibWaveTN = 14; voiceVibWaveTable = tableNumber voiceVibWaveTN
voiceWaveTN = 15; voiceWaveTable = tableNumber voiceWaveTN

voiceWave, voiceVibWave :: Score.Statement
voiceWave = Score.Table voiceWaveTN 0 1024 True

(let width = 50
in lineSeg1 0 [(width, 1), (width, 0), (1024-2*width, 0)])

voiceVibWave = Score.Table voiceVibWaveTN 0 1024 True (compSine1 [1.0, 0.4])

voiceScore :: TutOrchestra out -> Score.T
voiceScore orc =

127

voiceVibWave : voiceWave : scored orc attrToInstr1p2 voiceTune

voiceOE :: SigExp -> SigExp -> SoundMap.InstrumentSigExp Mono
voiceOE phoneme gain _noteDur noteVel notePit =

let vol = dbToAmp noteVel
signal = voice’ voiceVibWaveTable voiceWaveTable

gain (3/100) 5 vol (pchToHz notePit) phoneme
in Mono signal

voiceOrc :: TutOrchestra Mono
voiceOrc = (hdr, [instrAssoc1p2 voiceOE])

voice :: (Name, Score.T, TutOrchestra Mono)
voice = example "voice" voiceScore voiceOrc

4.4 MML

module Haskore.Interface.MML where

import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Music as Music
import qualified Haskore.Melody as Melody
import Haskore.Basic.Duration((%+))

import Control.Monad.Trans.State (State, state, evalState,)

I found some music notated in a language called MML. The description consists of strings.

• ln determines the duration of subsequent notes: l1 - whole note, l2 - half note, l4 - quarter note
and so on.

• > switch to the octave above

• < switch to the octave below

• Lower case letter a - g play the note of the corresponding pitch class.

• # (sharp) or - (flat) may follow a note name in order to increase or decrease, respectively, the pitch of
the note by a semitone.

• An additional figure for the note duration may follow.

• p is pause.

See module Kantate147 for an example.

type Accum = (Music.Dur, Pitch.Octave)

barToMusic :: String -> Accum -> ([Melody.T ()], Accum)
barToMusic [] accum = ([], accum)
barToMusic (c:cs) (dur, oct) =

128

let charToDur dc = 1 %+ read (dc:[])
prependAtom atom adur (ms, newAccum) =

(atom adur : ms, newAccum)
procNote ndur pitch c0s =

let mkNote c1s = prependAtom (flip (Melody.note (oct, pitch)) ())
ndur (barToMusic c1s (dur, oct))

in case c0s of
’#’:c1s -> procNote ndur (succ pitch) c1s
’-’:c1s -> procNote ndur (pred pitch) c1s
c1 :c1s -> if ’0’<=c1 && c1<=’9’

then procNote (charToDur c1) pitch c1s
else mkNote c0s

[] -> mkNote c0s
in case c of

’c’ -> procNote dur Pitch.C cs
’d’ -> procNote dur Pitch.D cs
’e’ -> procNote dur Pitch.E cs
’f’ -> procNote dur Pitch.F cs
’g’ -> procNote dur Pitch.G cs
’a’ -> procNote dur Pitch.A cs
’b’ -> procNote dur Pitch.B cs
’p’ -> let (c1:c1s) = cs

in prependAtom Music.rest (charToDur c1)
(barToMusic c1s (dur, oct))

’<’ -> barToMusic cs (dur, oct-1)
’>’ -> barToMusic cs (dur, oct+1)
’l’ -> let (c1:c1s) = cs

in barToMusic c1s (charToDur c1, oct)
_ -> error ("unexpected character ’"++[c]++"’ in Haskore.Interface.MML description")

toMusicState :: String -> State Accum [Melody.T ()]
toMusicState s = state (barToMusic s)

toMusic :: Pitch.Octave -> String -> Melody.T ()
toMusic oct s = Music.line (evalState (toMusicState s) (0, oct))

5 Processing and Analysis

5.1 Optimization

This module provides functions that simplify the structure of a Music.T according to the rules proven in
Section 3.2.1

module Haskore.Process.Optimization where

import qualified Medium.Controlled.List as CtrlMediumList
import qualified Medium.Controlled as CtrlMedium
import qualified Haskore.Music as Music
import Medium.Controlled.List (serial, parallel,)
import Data.List.HT (partitionMaybe,)
import Data.Maybe.HT (toMaybe,)
import Data.Maybe (catMaybes, fromMaybe,)

129

Music.T objects that come out of ReadMidi.toMusic almost always contain redundancies, like
rests of zero duration and redundant instrument specifications. The function Optimization.all reduces
the redundancy to make a Music.T file less cluttered and more efficient to use.

all, rest, composition, duration, tempo, transpose, volume ::
Music.T note -> Music.T note

all = tempo . transpose . volume . singleton . composition . rest

Remove rests of zero duration.

rest = Music.mapList
(,)
(flip const)
(filter (not . isZeroRest))
(filter (not . isZeroRest))

isZeroRest :: Music.T note -> Bool
isZeroRest =

Music.switchList
(\d at -> d==0 && maybe True (const False) at)
(const (const False))
(const False)
(const False)

Remove empty parallel and serial compositions and controllers of empty music.

composition = fromMaybe (Music.rest 0) . Music.foldList
(\d -> Just . Music.atom d)
(fmap . Music.control)
((\ms -> toMaybe (not (null ms)) (serial ms)) . catMaybes)
((\ms -> toMaybe (not (null ms)) (parallel ms)) . catMaybes)

Remove any atom of zero duration. This is not really an optimization but a hack to get rid of MIDI
NoteOn and NoteOff events at the same time point.

duration = fromMaybe (Music.rest 0) . Music.foldList
(\d -> toMaybe (d /= 0) . Music.atom d)
(fmap . Music.control)
(Just . serial . catMaybes)
(Just . parallel . catMaybes)

The control structures for tempo, transposition and change of instruments can be handled very similar
using the following routines. The function mergeControl’ checks if nested controllers are of the same
kind. If they are then they are merged into one. The function would be much simpler if it would be
implemented for specific constructors, but we want to stay independent from the particular data structure,
which is already quite complex.

mergeControl’ ::
(Music.Control -> Maybe a)

-> (a -> Music.T note -> Music.T note)
-> (a -> a -> a)
-> Music.T note
-> Music.T note

130

mergeControl’ extract control merge =
let fcSub c m = fmap (flip (,) m) (extract c)

fc’ c0 m0 x0 =
maybe (Music.control c0 m0)

(\(x1,m1) -> control (merge x0 x1) m1)
(Music.switchList (const (const Nothing))

fcSub (const Nothing) (const Nothing) m0)
fc c m = maybe (Music.control c m)

(fc’ c m)
(extract c)

in Music.foldList
Music.atom fc Music.line Music.chord

The following function collects neighboured controllers into groups, extracts controllers of a specific
type and prepends a controller to the list of neighboured controllers, which has the total effect of the ex-
tracted controllers. This change of ordering is always possible because in the current set of controllers
two neighboured controllers of different type commutes. E.g. it is transpose n . changeTempo
r == changeTempo r . transpose n and thus the following simplification transpose 1 .
changeTempo 2 . transpose 3 == transpose 4 . changeTempo 2 is possible.

mergeControl, mergeControlCompact ::
(Music.Control -> Maybe a)

-> (a -> Music.T note -> Music.T note)
-> (a -> a -> a)
-> Music.T note
-> Music.T note

mergeControlCompact extract control merge =
let collectControl =

Music.switchList
(\d n -> ([], Music.atom d n))
(\c m -> let cm = collectControl m

in (c : fst cm, snd cm))
((,) [] . Music.line . map recourse)
((,) [] . Music.chord . map recourse)

recourse m =
let cm = collectControl m

(xs, cs’) = partitionMaybe extract (fst cm)
x = foldl1 merge xs
collectedCtrl = if null xs then id else control x

in collectedCtrl (foldr id (snd cm) (map Music.control cs’))
in recourse

-- more intuitive implementation
mergeControl extract control merge =
-- flattenControllers .
-- CtrlMediumList.mapControl

CtrlMedium.foldList
CtrlMediumList.prim
CtrlMediumList.serial
CtrlMediumList.parallel
(\cs cm ->

let (xs, cs’) = partitionMaybe extract cs
collectedCtrl =

if null xs then id else control (foldl1 merge xs)

131

in collectedCtrl (foldr id cm (map Music.control cs’))) .
cumulateControllers

cumulateControllers ::
CtrlMediumList.T control a

-> CtrlMediumList.T [control] a
cumulateControllers =

CtrlMedium.foldList
CtrlMediumList.prim
CtrlMediumList.serial
CtrlMediumList.parallel
(\c m ->

let cm = CtrlMedium.control [c] m
in CtrlMedium.switchList

(const cm)
(const cm)
(const cm)
(\cs m’ -> CtrlMedium.control (c:cs) m’)
m)

flattenControllers ::
CtrlMediumList.T [control] a

-> CtrlMediumList.T control a
flattenControllers =

CtrlMedium.foldList
CtrlMediumList.prim
CtrlMediumList.serial
CtrlMediumList.parallel
(flip (foldr id) . map CtrlMedium.control)

The function removeNeutral removes controllers that have no effect.

removeNeutral :: (Music.Control -> Bool) -> Music.T note -> Music.T note
removeNeutral isNeutral =

let fc c m = if isNeutral c
then m
else Music.control c m

in Music.foldList Music.atom fc Music.line Music.chord

Remove redundant Tempos.

tempo =
let maybeTempo (Music.Tempo t) = Just t

maybeTempo _ = Nothing
in removeNeutral (== Music.Tempo 1) .

mergeControl maybeTempo Music.changeTempo (*)

Remove redundant Transposes.

transpose =
let maybeTranspose (Music.Transpose t) = Just t

maybeTranspose _ = Nothing
in removeNeutral (== Music.Transpose 0) .

mergeControl maybeTranspose Music.transpose (+)

132

Change repeated Volume Note Attributes to Phrase Attributes.

volume =
let maybeLoudness (Music.Phrase (Music.Dyn (Music.Loudness t))) = Just t

maybeLoudness _ = Nothing
in removeNeutral (== Music.Phrase (Music.Dyn (Music.Loudness 1))) .

mergeControl maybeLoudness Music.loudness1 (*)

Eliminate Serial and Parallel composition if they contain only one member. This can be done
very general for CtrlMedium.T. We have also a version which works on Music.T. Since the medium
data type supports controllers there is no longer a real difference between these two functions.

singletonMedium ::
CtrlMediumList.T control a -> CtrlMediumList.T control a

singletonMedium =
CtrlMedium.foldList CtrlMediumList.prim

(\ms -> case ms of {[x] -> x; _ -> serial ms})
(\ms -> case ms of {[x] -> x; _ -> parallel ms})
(CtrlMedium.control)

singleton :: Music.T note -> Music.T note
singleton =

Music.foldList Music.atom Music.control
(\ms -> case ms of {[x] -> x; _ -> Music.line ms})
(\ms -> case ms of {[x] -> x; _ -> Music.chord ms})

5.2 Structure Analysis

This module contains a function which builds a hierarchical music object from a serial one. This is achieved
by searching for long common infixes. A common infix is replaced by a single object at each occurence.

This module proofs the sophistication of the separation between general arrangement of some objects
as provided by the module Medium and the special needs of music provided by the module Music. It’s
possible to formulate these algorithms without the knowledge of Music and we can insert the type Tag
to distinguish between media primitives and macro calls. The only drawback is that it is not possible to
descend into controlled sub-structures, like Tempo and Trans.

module Medium.Controlled.ContextFreeGrammar
(T, Tag(..), TagMedium, fromMedium, toMedium) where

import qualified Medium.Controlled.List as CtrlMediumList
import qualified Medium.Controlled as CtrlMedium
import Medium.Plain.ContextFreeGrammar

(Tag(..), joinTag, replaceInfix,
whileM, smallestCycle, maximumCommonInfixMulti)

import Medium (prim, serial1, parallel1)

import Data.Maybe (fromJust)
import qualified Haskore.General.Map as Map

import Control.Monad.Trans.State (state, execState)

133

Condense all common infixes down to length ’thres’. The infixes are replaced by some marks using
the constructor Left. They can be considered as macros or as non-terminals in a grammar. The normal
primitives are preserved with constructor Right. We end up with a context-free grammar of the media.

type TagMedium key control prim = CtrlMediumList.T control (Tag key prim)

type T key control prim = [(key, TagMedium key control prim)]

fromMedium :: (Ord key, Ord control, Ord prim) =>
[key] -> Int -> CtrlMediumList.T control prim -> T key control prim

fromMedium (key:keys) thres m =
let action = whileM (>= thres) (map (state . condense) keys)

-- action = sequence (take 1 (map (state . condense) keys))
in reverse $ execState action [(key, fmap Prim m)]

fromMedium _ _ _ =
error ("No key given."++

" Please provide an infinite or at least huge number of macro names.")

The inverse of fromMedium: Expand all macros. Cyclic macro references shouldn’t be a problem
if it is possible to resolve the dependencies. We manage the grammar in the dictionary dict. Now a
naive way for expanding the macros is to recourse into each macro call manually using lookups to dict.
This would imply that we need new memory for each expansion of the same macro. We have chosen a
different approach: We map dict to a new dictionary dict’ which contains the expanded versions of
each Medium. For expansion we don’t use repeated lookups to dict but we use only one lookup to dict’
– which contains the fully expanded version of the considered Medium. This method is rather the same as
if you write Haskell values that invokes each other.

The function expand computes the expansion for each key and the function toMedium computes the
expansion of the first macro. Thus toMedium quite inverts fromMedium.

toMedium :: (Show key, Ord key, Ord prim) =>
T key control prim -> CtrlMediumList.T control prim

toMedium = snd . head . expand

expand :: (Show key, Ord key, Ord prim) =>
T key control prim -> [(key, CtrlMediumList.T control prim)]

expand grammar =
let notFound key = error ("The non-terminal ’" ++ show key ++ "’ is unknown.")

dict = Map.fromList grammar
dict’ = Map.map (CtrlMedium.foldList expandSub serial1 parallel1

CtrlMedium.control) dict
expandSub (Prim p) = prim p
expandSub (Call key) =

Map.findWithDefault dict’ (notFound key) key
expandSub (CallMulti n key) =

serial1 (replicate n (Map.findWithDefault dict’ (notFound key) key))
in map (fromJust . Map.lookup (Map.mapWithKey (,) dict’) . fst) grammar

Find the longest common infix over all parts of the music and replace it in all of them.

condense :: (Ord key, Ord control, Ord prim) =>
key

-> T key control prim

134

-> (Int, T key control prim)
condense key x =

let getSerials = CtrlMedium.switchList
(const [])
(\xs -> xs : concatMap getSerials xs)
(\xs -> concatMap getSerials xs)
(const getSerials)

infx = smallestCycle (maximumCommonInfixMulti length
(concatMap (getSerials . snd) x))

absorbSingleton _ [m] = m
absorbSingleton collect ms = collect ms
replaceRec = CtrlMedium.foldList prim

(absorbSingleton serial1 . map joinTag . replaceInfix key infx)
(absorbSingleton parallel1)
(CtrlMedium.control)

in (length infx, (key, serial1 infx) : map (\(k, ms) -> (k, replaceRec ms)) x)

5.3 Markov Chains

Markov chains are now available in a package called markov-chain.

5.4 Pretty printing Music

This module aims at formatting (pretty printing) of musical objects with Haskell syntax. This is particularly
useful for converting algorithmically generated music into Haskell code that can be edited and furtherly
developed.

module Haskore.Process.Format where

import qualified Language.Haskell.Pretty as Pretty
import qualified Language.Haskell.Syntax as Syntax
import qualified Language.Haskell.Parser as Parser

import qualified Haskore.Basic.Duration as Duration
import qualified Haskore.Music as Music
import qualified Haskore.Melody as Melody
import qualified Haskore.Melody.Standard as StdMelody
import qualified Medium.Controlled as CtrlMedium

import Medium.Controlled.ContextFreeGrammar as Grammar
import qualified Haskore.General.Map as Map
import qualified Data.Ratio as Ratio
import qualified Data.Char as Char
import Data.List(intersperse)

Format a grammar as computed with the module Medium.Controlled.ContextFreeGrammar.

prettyGrammarMedium :: (Show prim, Show control) =>
Grammar.T String control prim -> String

prettyGrammarMedium = prettyGrammar controlGen prim

135

prettyGrammarMelody ::
Grammar.T String Music.Control (Music.Primitive StdMelody.Note) -> String

prettyGrammarMelody = prettyGrammar control primMelody

prettyGrammar ::
(Int -> control -> (Int -> ShowS) -> ShowS) ->
(Int -> prim -> ShowS) ->
Grammar.T String control prim -> String

prettyGrammar controlSyntax primSyntax g =
let text = unlines (map (flip id "" . bind controlSyntax primSyntax) g)

Parser.ParseOk (Syntax.HsModule _ _ _ _ code) =
Parser.parseModule text

in unlines (map Pretty.prettyPrint code) -- show code

Format a Medium object that contains references to other medium objects.

bind ::
(Int -> control -> (Int -> ShowS) -> ShowS) ->
(Int -> prim -> ShowS) ->
(String, Grammar.TagMedium String control prim) -> ShowS

bind controlSyntax primSyntax (key, ms) =
showString key . showString " = " . tagMedium 0 controlSyntax primSyntax ms

tagMedium ::
Int ->
(Int -> control -> (Int -> ShowS) -> ShowS) ->
(Int -> prim -> ShowS) ->
Grammar.TagMedium String control prim -> ShowS

tagMedium prec controlSyntax primSyntax m =
let primSyntax’ _ (Grammar.Call s) = showString s

primSyntax’ prec’ (Grammar.CallMulti n s) =
enclose prec’ 0

(showString "serial $ replicate " . showsPrec 10 n .
showString " " . showString s)

primSyntax’ prec’ (Grammar.Prim p) = primSyntax prec’ p
in CtrlMedium.foldList

(flip primSyntax’)
(listFunc "serial")
(listFunc "parallel")
(flip . flip controlSyntax)
m prec

list :: [Int -> ShowS] -> ShowS
list = foldr (.) (showString "]") . (showString "[" :) .

intersperse (showString ",") . map (flip id 0)

listFunc :: String -> [Int -> ShowS] -> Int -> ShowS
listFunc func ps prec =

enclose prec 10 (showString func . showString " " . list ps)

prim :: (Show p) => Int -> p -> ShowS
prim prec p = enclose prec 10 (showString "prim " . showsPrec 10 p)

dummySrcLoc :: Syntax.SrcLoc
dummySrcLoc = Syntax.SrcLoc {Syntax.srcFilename = "",

Syntax.srcLine = 0,

136

Syntax.srcColumn = 0}

Of course we also want to format plain music, that is music without tags.

prettyMelody :: StdMelody.T -> String
prettyMelody m = prettyExp (melody 0 m "")

prettyExp :: String -> String
prettyExp text =

let Parser.ParseOk (Syntax.HsModule _ _ _ _
[Syntax.HsPatBind _ _ (Syntax.HsUnGuardedRhs code) _]) =

Parser.parseModule ("dummy = "++text)
in Pretty.prettyPrint code

Now we go to define functions that handle the particular primitives of music. Note that Control
information and NoteAttributes are printed as atoms.

melody :: Int -> StdMelody.T -> ShowS
melody prec m =

Music.foldList
(flip . flip atom)
(flip . flip control)
(listFunc "line")
(listFunc "chord")
m prec

primMelody :: Int -> Music.Primitive StdMelody.Note -> ShowS
primMelody prec (Music.Atom d at) = atom prec d at

atom :: Show attr =>
Int -> Duration.T -> Music.Atom (Melody.Note attr) -> ShowS

atom prec d = maybe (rest prec d) (note prec d)

note :: Show attr =>
Int -> Duration.T -> Melody.Note attr -> ShowS

note prec d (Melody.Note nas (o,pc)) =
enclose prec 10 (showString (map Char.toLower (show pc)) .

showString " " . showsPrec 10 o .
showString " " . durSyntax id "n" d .
showString " " . showsPrec 10 nas)

rest :: Int -> Duration.T -> ShowS
rest prec d =

durSyntax (\dStr -> enclose prec 10 (showString "rest " . dStr)) "nr" d

controlGen :: (Show control) => Int -> control -> (Int -> ShowS) -> ShowS
controlGen prec c m =

enclose prec 10
(showString "control " . showsPrec 10 c .
showString " " . m 10)

control :: Int -> Music.Control -> (Int -> ShowS) -> ShowS
control prec c m =

let controlSyntax name arg =
enclose prec 10

137

(showString name . showString " " . arg . showString " " . m 10)
in case c of

Music.Tempo d -> controlSyntax "changeTempo" (showDur 10 d)
Music.Transpose p -> controlSyntax "transpose" (showsPrec 10 p)
Music.Player p -> controlSyntax "setPlayer" (showsPrec 10 p)
Music.Phrase p -> controlSyntax "phrase" (showsPrec 10 p)

Note that the call to show can’t be moved from the controlSyntax calls in control to
controlSyntax because that provokes a compiler problem, namely

Mismatched contexts
When matching the contexts of the signatures for

controlSyntax :: forall a.
(Show a) =>
String -> a -> StdMelody.T -> Language.Haskell.Syntax.HsExp

control :: Music.Primitive -> Language.Haskell.Syntax.HsExp
The signature contexts in a mutually recursive group should all be identical
When generalising the type(s) for controlSyntax, control

durSyntax :: (ShowS -> ShowS) -> String -> Duration.T -> ShowS
durSyntax showRatio suffix d =

maybe
(showRatio (showDur 10 d))
(\s -> showString (s++suffix))
(Map.lookup Duration.nameDictionary d)

showDur :: Int -> Duration.T -> ShowS
showDur prec =

(\d -> enclose prec 7
(shows (Ratio.numerator d) .
showString "%+" .
shows (Ratio.denominator d))) .

Duration.toRatio

Enclose an expression in parentheses if the inner operator has at most the precedence of the outer oper-
ator.

enclose :: Int -> Int -> ShowS -> ShowS
enclose outerPrec innerPrec = showParen (outerPrec >= innerPrec)

6 Related and Future Research

Many proposals have been put forth for programming languages targeted for computer music composition
[Dan89, Sch83, Col84, AK92, DFV92, HS92, CR84, OFLB94], so many in fact that it would be difficult to
describe them all here. None of them (perhaps surprisingly) are based on a pure functional language, with
one exception: the recent work done by Orlarey et al. at GRAME [OFLB94], which uses a pure lambda
calculus approach to music description, and bears some resemblance to our effort. There are some other
related approaches based on variants of Lisp, most notably Dannenberg’s Fugue language [DFV92], in
which operators similar to ours can be found but where the emphasis is more on instrument synthesis rather

138

than note-oriented composition. Fugue also highlights the utility of lazy evaluation in certain contexts,
but extra effort is needed to make this work in Lisp, whereas in a non-strict language such as Haskell it
essentially comes “for free”. Other efforts based on Lisp utilize Lisp primarily as a convenient vehicle
for “embedded language design,” and the applicative nature of Lisp is not exploited well (for example, in
Common Music the user will find a large number of macros which are difficult if not impossible to use in a
functional style).

We are not aware of any computer music language that has been shown to exhibit the kinds of algebraic
properties that we have demonstrated for Haskore. Indeed, none of the languages that we have investigated
make a useful distinction between music and performance, a property that we find especially attractive about
the Haskore design. On the other hand, Balaban describes an abstract notion (apparently not yet a program-
ming language) of “music structure,” and provides various operators that look similar to ours [Bal92]. In
addition, she describes an operation called flatten that resembles our literal interpretation perform. It
would be interesting to translate her ideas into Haskell; the match would likely be good.

Perhaps surprisingly, the work that we find most closely related to ours is not about music at all: it is
Henderson’s functional geometry, a functional language approach to generating computer graphics [Hen82].
There we find a structure that is in spirit very similar to ours: most importantly, a clear distinction between
object description and interpretation (which in this paper we have been calling musical objects and their
performance). A similar structure can be found in Arya’s functional animation work [Ary94].

There are many interesting avenues to pursue with this research. On the theoretical side, we need a
deeper investigation of the algebraic structure of music, and would like to express certain modern theories of
music in Haskore. The possibility of expressing other scale types instead of the thus far unstated assumption
of standard equal temperament scales is another area of investigation. On the practical side, the potential of
a graphical interface to Haskore is appealing. We are also interested in extending the methodology to sound
synthesis. Our primary goal currently, however, is to continue using Haskore as a vehicle for interesting
algorithmic composition (for example, see [HB95]).

139

A Helper modules

A.1 Convenient Functions for Getting Started With Haskore and MIDI

module Haskore.Interface.MIDI.Render where

import qualified Haskore.Interface.MIDI.Write as WriteMidi
import qualified Haskore.Interface.MIDI.InstrumentMap as InstrMap
import qualified Sound.MIDI.General as GeneralMidi

import qualified Sound.MIDI.File.Save as SaveMidi
import qualified Sound.MIDI.File as MidiFile
import qualified Sound.MIDI.Message.Channel as ChannelMsg

import qualified Haskore.Music.GeneralMIDI as MidiMusic
import qualified Haskore.Music.Rhythmic as RhyMusic
import qualified Haskore.Music as Music
import qualified Haskore.Melody as Melody
import qualified Haskore.Performance.Context as Context
import qualified Haskore.Performance.Fancy as FancyPerformance

import qualified Numeric.NonNegative.Class as NonNeg
import qualified Numeric.NonNegative.Wrapper as NonNegW

import System.Cmd (rawSystem,)
import System.Exit (ExitCode,)

Given a Player.Map, Context.T, InstrMap.T, and file name, we can write a MidiMusic.T
value into a midi file:

fileFromRhythmicMusic ::
(Ord instr, Ord drum, NonNeg.C time, RealFrac time, RealFrac dyn) =>
FilePath ->

(InstrMap.ChannelProgramPitchTable drum,
InstrMap.ChannelProgramTable instr,
Context.T time dyn (RhyMusic.Note drum instr),
RhyMusic.T drum instr) -> IO ()

fileFromRhythmicMusic fn m =
SaveMidi.toFile fn (WriteMidi.fromRhythmicMusic m)

A.1.1 Test routines

Using the defaults above, from a MidiMusic.T object, we can:

1. generate a Performance.T using Haskore.Performance.Default.fancyFromMusic

2. generate a MidiFile.T data structure

midi :: MidiMusic.T -> MidiFile.T
midi =

WriteMidi.fromRhythmicPerformance [] InstrMap.defltGM .

140

FancyPerformance.floatFromMusic

generalMidi :: MidiMusic.T -> MidiFile.T
generalMidi =

WriteMidi.fromGMPerformanceAuto .
FancyPerformance.floatFromMusic

generalMidiDeflt :: MidiMusic.T -> MidiFile.T
generalMidiDeflt =

WriteMidi.fromGMPerformance (InstrMap.lookup InstrMap.defltCMap) .
FancyPerformance.floatFromMusic

mixedMidi :: MidiMusic.T -> MidiFile.T
mixedMidi =

WriteMidi.fromRhythmicPerformanceMixed [] InstrMap.defltGM .
FancyPerformance.floatFromMusic

mixedGeneralMidi :: MidiMusic.T -> MidiFile.T
mixedGeneralMidi =

WriteMidi.fromGMPerformanceMixedAuto .
FancyPerformance.floatFromMusic

3. generate a MIDI file

fileFromGeneralMIDIMusic :: FilePath -> MidiMusic.T -> IO ()
fileFromGeneralMIDIMusic filename = SaveMidi.toFile filename . generalMidi

4. generate and play a MIDI file on Windows 95, Windows NT, or Linux

fileName :: FilePath
fileName = "test.mid"

play :: String -> [String] -> MidiMusic.T -> IO ExitCode
play cmd opts m =

do fileFromGeneralMIDIMusic fileName m
rawSystem cmd (opts ++ [fileName])

playWin95, playWinNT,
playLinux, playAlsa, playTimidity, playTimidityJack :: MidiMusic.T -> IO ExitCode

playWin95 = play "mplayer" []
playWinNT = play "mplay32" []
playLinux = play "playmidi" ["-rf"]
playAlsa = play "pmidi" ["-p 128:0"]
playTimidity = play "timidity" ["-B8,9"]
playTimidityJack = play "timidity" ["-Oj"]

Alternatively, just run fileFromGeneralMIDIMusic "test.mid" m manually, and then in-
voke the midi player on your system using playTest, defined below for NT:

playTest :: IO ExitCode
playTest =

rawSystem "mplay32" [fileName]

141

A.1.2 Some General Midi test functions

Use these functions with caution.

A General Midi user patch map; i.e. one that maps GM instrument names to themselves, using a channel
that is the patch number modulo 16. This is for use ONLY in the code that follows, o/w channel duplication
is possible, which will screw things up in general.

gmUpm :: InstrMap.ChannelProgramTable MidiMusic.Instr
gmUpm =

zipWith
(\instr chan ->

(instr, (chan, GeneralMidi.instrumentToProgram instr)))
GeneralMidi.instruments
(cycle $ map ChannelMsg.toChannel [0..15])

Something to play each "instrument group" of 8 GM instruments; this function will play a C major
arpeggio on each instrument.

gmTest :: Int -> IO ()
gmTest i =

let gMM = take 8 (drop (i*8) GeneralMidi.instruments)
mu = Music.line (map simple gMM)
simple instr = MidiMusic.fromMelodyNullAttr instr Melody.cMajArp

in fileFromRhythmicMusic fileName
([], gmUpm, FancyPerformance.context ::

Context.T NonNegW.Float Float MidiMusic.Note, mu)

A.2 Utility functions

module Haskore.General.Utility where

import Control.Monad.Trans.State (state, runState,)
import System.Random (RandomGen, randomR, randomRs, mkStdGen,)
import Data.List.HT (segmentBefore, partition,)
import Data.List (foldl’,)
import Data.Ratio ((%), denominator, numerator, Ratio,)
import Data.Maybe (fromMaybe, listToMaybe,)
import Data.Char (ord, chr,)
import Data.Word (Word8,)
import qualified Haskore.General.Map as Map

splitBy takes a boolean test and a list; it divides up the list and turns it into a list of sub-lists; each
sub-list consists of

1. one element for which the test is true (or the first element in the list), and

2. all elements after that element for which the test is false.

For example, splitBy (>10) [27, 0, 2, 1, 15, 3, 42, 4] yields [[27,0,2,1],
[15,3], [42,4]].

142

splitBy :: (a -> Bool) -> [a] -> [[a]]
splitBy p = dropWhile null . segmentBefore p

segmentBeforewill have at most one empty list at the beginning, which is dropped by dropWhile.

It should have signature segmentBefore :: (a -> Bool) -> [a] -> ([a], [(a, [a])]) or even better seg-
mentBefore :: (a -> Bool) -> [a] -> AlternatingListUniform.T a [a] and could be implemented using Uni-
form.fromEitherList

A variant of foldr and foldr1 which works only for non-empty lists and initializes the accumulator
depending on the last element of the list.

foldrf :: (a -> b -> b) -> (a -> b) -> [a] -> b
foldrf f g =

let aux [] = error "foldrf: list must be non-empty"
aux (x:[]) = g x
aux (x:xs) = f x (aux xs)

in aux

Randomly permutate a list. For this purpose we generate a random Bool value for each item of the list
which specifies in what sublist it is inserted. Both sublists are then concatenated hereafter. By repeating this
procedure several times the list should be somehow randomly ordered.

Some notes about perfect shuffling from Oleg: http://okmij.org/ftp/Haskell/misc.
html#perfect-shuffle

shuffle :: RandomGen g => [a] -> g -> ([a],g)
shuffle x g0 =

let (choices,g1) =
runState (mapM (const (state (randomR (False,True)))) x) g0

xc = zip x choices
in (map fst (uncurry (++) (partition snd xc)), g1)

flattenTuples2 flattens a list of pairs into a list. Similarly, flattenTuples3 flattens a list of
3-tuples into a list, and so on.

flattenTuples2 :: [(a,a)] -> [a]
flattenTuples3 :: [(a,a,a)] -> [a]
flattenTuples4 :: [(a,a,a,a)] -> [a]

flattenTuples2 = concatMap (\(x,y) -> [x,y])
flattenTuples3 = concatMap (\(x,y,z) -> [x,y,z])
flattenTuples4 = concatMap (\(x,y,z,w) -> [x,y,z,w])

Choose the first element from a list, and return the default value, if the list is empty.

headWithDefault :: a -> [a] -> a
headWithDefault deflt = fromMaybe deflt . listToMaybe

Implementation with the partial function head, which is a bad thing.

headWithDefault deflt xs = head (xs ++ [deflt])

143

http://okmij.org/ftp/Haskell/misc.html#perfect-shuffle
http://okmij.org/ftp/Haskell/misc.html#perfect-shuffle

Compare

let (x,y) = splitInit [0..] in (last x, y)

and

let as = [0..]; (x,y) = (init as, last as) in (last x, y)

Variants of zip and zip3 which check that all argument lists have the same length.

zipWithMatch :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWithMatch f (x:xs) (y:ys) = f x y : zipWithMatch f xs ys
zipWithMatch _ [] [] = []
zipWithMatch _ _ _ = error "zipWithMatch: lengths of lists differ"

zipWithMatch3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
zipWithMatch3 f (x:xs) (y:ys) (z:zs) = f x y z : zipWithMatch3 f xs ys zs
zipWithMatch3 _ [] [] [] = []
zipWithMatch3 _ _ _ _ = error "zipWithMatch3: lengths of lists differ"

This is a variant of maximum which returns at least zero, i.e. always a non-negative number. This is
necessary for determining the length of a parallel music composition where the empty list has zero duration.

maximum0 :: (Ord a, Num a) => [a] -> a
maximum0 = foldl’ max 0

Convert a mapping (i.e. list of pairs) to a function, and use this for a translation function, which translates
every character in a by replacing it by looking it up in l2 and replacing it with the according character in l2.

translate :: (Ord a) => [a] -> [a] -> [a] -> [a]
translate l1 l2 a =

if length l1 == length l2
then let table = Map.fromList (zip l1 l2)

in map (\x -> Map.findWithDefault table x x) a
else error "translate: lists must have equal lengths"

A random list of integers between 0 and n.

randList :: Int -> [Int]
randList n = randomRs (0, n) (mkStdGen 0)

Is one rational divisible by another one (i.e., is it a integer multiple of it)?

divisible :: Integral a => Ratio a -> Ratio a -> Bool
divisible r1 r2 =

0 == mod (numerator r1 * denominator r2)
(numerator r2 * denominator r1)

Do the division.

divide :: Integral a => Ratio a -> Ratio a -> a
divide r1 r2 =

let (q, r) = divideModulus r1 r2
in if r == 0

144

then q
else error "Utility.divide: rationals are indivisible"

modulus :: Integral a => Ratio a -> Ratio a -> Ratio a
modulus r1 r2 = snd (divideModulus r1 r2)

divideModulus :: Integral a => Ratio a -> Ratio a -> (a, Ratio a)
divideModulus r1 r2 =

let (q, r) = divMod (numerator r1 * denominator r2)
(numerator r2 * denominator r1)

in (q, r % (denominator r1 * denominator r2))

Also the GCD can be generalized to ratios:

gcdDur :: Integral a => Ratio a -> Ratio a -> Ratio a
gcdDur x1 x2 =

let a = numerator x1
b = denominator x1
c = numerator x2
d = denominator x2

in gcd a c % lcm b d

type ByteList = [Word8]

stringCharFromByte :: ByteList -> String
stringCharFromByte = map (chr . fromIntegral)

stringByteFromChar :: String -> ByteList
stringByteFromChar = map (fromIntegral . ord)

B Examples

B.1 Haskore in Action

module Haskore.Example.Miscellaneous where

import Haskore.Composition.Trill as Trill
import Haskore.Composition.Drum as Drum

import qualified Haskore.Music as Music
import Haskore.Music (rest, delay, (/=:))
import Haskore.Music.GeneralMIDI as MidiMusic
import qualified Haskore.Music.Rhythmic as RhyMusic
import qualified Haskore.Melody as Melody
import Haskore.Melody.Standard as StdMelody
import qualified Haskore.Performance.Context as Context

import qualified Haskore.Interface.MIDI.InstrumentMap as InstrMap
import qualified Haskore.Interface.MIDI.Write as WriteMidi
import qualified Haskore.Interface.MIDI.Read as ReadMidi
import qualified Haskore.Interface.MIDI.Render as Render

145

import qualified Sound.MIDI.File.Save as SaveMidi
import qualified Sound.MIDI.File.Load as LoadMidi
import qualified Sound.MIDI.File as MidiFile
import qualified Sound.MIDI.General as GeneralMidi

import qualified Haskore.Example.SelfSim as SelfSim
import qualified Haskore.Example.ChildSong6 as ChildSong6
import qualified Haskore.Example.Ssf as Ssf

import Haskore.Basic.Duration ((%+))
import qualified Numeric.NonNegative.Wrapper as NonNeg

import Data.Tuple.HT (fst3, snd3, thd3,)

t0, t1, t2, t3, t4, t5,
t10s, t12, t12a, t13, t13a, t13b, t13c, t13d, t13e,
t14, t14b, t14c, t14d, cs6, ssf0 :: MidiFile.T

piano, vibes, flute :: GeneralMidi.Instrument
piano = GeneralMidi.AcousticGrandPiano
vibes = GeneralMidi.Vibraphone
flute = GeneralMidi.Flute

Simple examples of Haskore in action. Note that this module also imports modules ChildSong6, Self-
Sim, and Ssf.

From the tutorial, try things such as pr12, cMajArp, cMajChd, etc. and try applying inversions, retro-
grades, etc. on the same examples. Also try ChildSong.song. For example:

t0 = Render.generalMidiDeflt ChildSong6.song

C Major scale for use in examples below:

cms’, cms :: Melody.T ()
cms’ = line (map (\n -> n en ())

[c 0, d 0, e 0, f 0, g 0, a 0, b 0, c 1])
cms = changeTempo 2 cms’

drumScale :: MidiMusic.T
drumScale =

line (map (\n -> Drum.toMusicDefaultAttr (toEnum (n+13)) sn)
[0,2,4,5,7,9,11,12])

Test of various articulations and dynamics:

t1 = Render.generalMidi
(staccato (sn/10) drumScale +:+

drumScale +:+
legato (sn/10) drumScale)

146

temp, mu2 :: MidiMusic.T
temp = MidiMusic.fromMelodyNullAttr piano (crescendo 4.0 (c 0 en ()))

mu2 = MidiMusic.fromMelodyNullAttr vibes
(diminuendo 0.75 cms +:+
crescendo 0.75 (loudness1 0.25 cms))

t2 = Render.generalMidiDeflt mu2

t3 = Render.generalMidiDeflt (MidiMusic.fromMelodyNullAttr flute
(accelerando 0.3 cms +:+
ritardando 0.6 cms))

A function to recursively apply transformations f’ (to elements in a sequence) and g’ (to accumulated
phrases):

rep :: (Music.T note -> Music.T note)
-> (Music.T note -> Music.T note)
-> Int -> Music.T note -> Music.T note

rep _ _ 0 _ = rest 0
rep f’ g’ n m = m =:= g’ (rep f’ g’ (n-1) (f’ m))

An example using "rep" three times, recursively, to create a "cascade" of sounds.

run, cascade, cascades :: Melody.T ()
run = rep (transpose 5) (delay tn) 8 (c 0 tn ())
cascade = rep (transpose 4) (delay en) 8 run
cascades = rep id (delay sn) 2 cascade

t4’ :: Melody.T () -> MidiFile.T
t4’ x = Render.generalMidiDeflt (MidiMusic.fromMelodyNullAttr piano x)
t4 = Render.generalMidiDeflt (MidiMusic.fromMelodyNullAttr piano

(cascades +:+ Music.reverse cascades))

What happens if we simply reverse the f and g arguments?

run’, cascade’, cascades’ :: Melody.T ()
run’ = rep (delay tn) (transpose 5) 4 (c 0 tn ())
cascade’ = rep (delay en) (transpose 4) 6 run’
cascades’ = rep (delay sn) id 2 cascade’
t5 = Render.generalMidiDeflt (MidiMusic.fromMelodyNullAttr piano cascades’)

Example from the SelfSim module.

t10s = Render.generalMidiDeflt (rep (delay SelfSim.durss) (transpose 4) 2 SelfSim.ss)

Example from the ChildSong6 module.

cs6 = Render.generalMidiDeflt ChildSong6.song

Example from the Ssf (Stars and Stripes Forever) module.

147

ssf0 = Render.generalMidiDeflt Ssf.song

Midi percussion test. Plays all "notes" in a range. (Requires adding an instrument for percussion to the
InstrMap.)

drums :: GeneralMidi.Drum -> GeneralMidi.Drum -> MidiMusic.T
drums dr0 dr1 =

line (map (\drm -> Drum.toMusicDefaultAttr drm sn) [dr0..dr1])

t11 :: GeneralMidi.Drum -> GeneralMidi.Drum -> MidiFile.T
t11 dr0 dr1 = Render.generalMidiDeflt (drums dr0 dr1)

Test of Music.take and shorten.

t12 = Render.generalMidiDeflt (Music.take 4 ChildSong6.song)
t12a =

Render.generalMidiDeflt
(MidiMusic.fromMelodyNullAttr piano cms /=: ChildSong6.song)

Tests of the trill functions.

t13note :: MidiMusic.T
t13note = MidiMusic.fromMelodyNullAttr piano (c 1 qn ())
t13 = Render.generalMidiDeflt (trill 1 sn t13note)
t13a = Render.generalMidiDeflt (trill’ 2 dqn t13note)
t13b = Render.generalMidiDeflt (trillN 1 5 t13note)
t13c = Render.generalMidiDeflt (trillN’ 3 7 t13note)
t13d = Render.generalMidiDeflt (roll tn t13note)
t13e = Render.generalMidiDeflt (changeTempo (2/3) (transpose 2 (trillN’ 2 7 t13note)))

Tests of drum.

t14 = Render.generalMidiDeflt (Drum.toMusicDefaultAttr AcousticSnare qn)

A "funk groove"

t14b = let p1 = Drum.toMusicDefaultAttr LowTom qn
p2 = Drum.toMusicDefaultAttr AcousticSnare en

in Render.generalMidiDeflt (changeTempo 3 (Music.replicate 4
(line [p1, qnr, p2, qnr, p2,

p1, p1, qnr, p2, enr]
=:= roll en (Drum.toMusicDefaultAttr ClosedHiHat 2))))

A "jazz groove"

t14c = let p1 = Drum.toMusicDefaultAttr CrashCymbal2 qn
p2 = Drum.toMusicDefaultAttr AcousticSnare en
p3 = Drum.toMusicDefaultAttr LowTom qn

in Render.generalMidiDeflt (changeTempo 3 (Music.replicate 8

148

((p1 +:+ changeTempo (3%+2) (p2 +:+ enr +:+ p2))
=:= (p3 +:+ qnr))))

t14d = let p1 = Drum.toMusicDefaultAttr LowTom en
p2 = Drum.toMusicDefaultAttr AcousticSnare hn

in Render.generalMidiDeflt(line [roll tn p1,
p1,
p1,
rest en,
roll tn p1,
p1,
p1,
rest qn,
roll tn p2,
p1,
p1])

Tests of the MIDI interface. MidiMusic.T into a MIDI file.

tab :: MidiMusic.T -> IO ()
tab m = SaveMidi.toFile "test.mid" (Render.generalMidiDeflt m)

MidiMusic.T to a MidiFile datatype and back to Music.

type StdContext =
Context.T NonNeg.Float Float (RhyMusic.Note MidiMusic.Drum MidiMusic.Instr)

-- type StdContext = Pf.Context NonNeg.Float Float MidiMusic.Note -- rejected by Hugs

type MidiArrange =
(InstrMap.ChannelTable MidiMusic.Instr, StdContext, MidiMusic.T)

tad :: MidiMusic.T -> MidiArrange
tad = ReadMidi.toGMMusic . Render.generalMidiDeflt

A MIDI file to a MidiFile datatype and back to a MIDI file.

tcb, tc, tcd, tcdab :: FilePath -> IO ()
tcb file = LoadMidi.fromFile file >>= SaveMidi.toFile "test.mid"

MIDI file to MidiFile datatype.

tc file = LoadMidi.fromFile file >>= print

MIDI file to MidiMusic.T, a InstrMap, and a Context.

tcd file = do
x <- fmap ReadMidi.toGMMusic

(LoadMidi.fromFile file)
print $ fst3 (x::MidiArrange)
print $ snd3 x
print $ thd3 x

149

A MIDI file to MidiMusic.T and back to a MIDI file.

tcdab file =
LoadMidi.fromFile file >>=

(SaveMidi.toFile "test.mid" . WriteMidi.fromGMMusic .
(id::MidiArrange -> MidiArrange) . ReadMidi.toGMMusic)

B.2 Children’s Song No. 6

This is a partial encoding of Chick Corea’s “Children’s Song No. 6”.

module Haskore.Example.ChildSong6 where

import Haskore.Melody.Standard as Melody
import Haskore.Music.GeneralMIDI as MidiMusic
import qualified Haskore.Music as Music

note updaters for mappings

fd :: t -> (t -> NoteAttributes -> m) -> m
fd dur n = n dur v

vel :: (NoteAttributes -> m) -> m
vel n = n v

v :: NoteAttributes
v = Melody.na

lmap :: (a -> Melody.T) -> [a] -> Melody.T
lmap func l = line (map func l)

bassLine, mainVoice :: Melody.T
song :: MidiMusic.T

Baseline:

b1, b2, b3 :: Melody.T
b1 = lmap (fd dqn) [b 3, fs 4, g 4, fs 4]
b2 = lmap (fd dqn) [b 3, es 4, fs 4, es 4]
b3 = lmap (fd dqn) [as 3, fs 4, g 4, fs 4]

bassLine =
Music.loudness1 (10/13)

(line [Music.replicate 3 b1, Music.replicate 2 b2,
Music.replicate 4 b3, Music.replicate 5 b1])

Main Voice:

v1, v1a, v1b :: Melody.T
v1 = v1a +:+ v1b
v1a = lmap (fd en) [a 5, e 5, d 5, fs 5, cs 5, b 4, e 5, b 4]
v1b = lmap vel [cs 5 tn, d 5 (qn-tn), cs 5 en, b 4 en]

150

v2, v2a, v2b, v2c, v2d, v2e, v2f :: Melody.T
v2 = line [v2a, v2b, v2c, v2d, v2e, v2f]
v2a = lmap vel [cs 5 (dhn+dhn), d 5 dhn,

f 5 hn, gs 5 qn, fs 5 (hn+en), g 5 en]
v2b = lmap (fd en) [fs 5, e 5, cs 5, as 4] +:+ a 4 dqn v +:+

lmap (fd en) [as 4, cs 5, fs 5, e 5, fs 5, g 5, as 5]
v2c = lmap vel [cs 6 (hn+en), d 6 en, cs 6 en, e 5 en] +:+ enr +:+

lmap vel [as 5 en, a 5 en, g 5 en, d 5 qn, c 5 en, cs 5 en]
v2d = lmap (fd en) [fs 5, cs 5, e 5, cs 5, a 4, as 4, d 5, e 5, fs 5] +:+

lmap vel [fs 5 tn, e 5 (qn-tn), d 5 en, e 5 tn, d 5 (qn-tn),
cs 5 en, d 5 tn, cs 5 (qn-tn), b 4 (en+hn)]

v2e = lmap vel [cs 5 en, b 4 en, fs 5 en, a 5 en, b 5 (hn+qn), a 5 en,
fs 5 en, e 5 qn, d 5 en, fs 5 en, e 5 hn, d 5 hn, fs 5 qn]

v2f = changeTempo (3/2) (lmap vel [cs 5 en, d 5 en, cs 5 en]) +:+ b 4 (3*dhn+hn) v

mainVoice = Music.replicate 3 v1 +:+ v2

Putting it all together:

song = MidiMusic.fromStdMelody MidiMusic.AcousticGrandPiano
(transpose (-48) (changeTempo 3

(bassLine =:= mainVoice)))

B.3 Self-Similar (Fractal) Music.T

module Haskore.Example.SelfSim where

import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Melody as Melody
import qualified Haskore.Music as Music
import Haskore.Music.GeneralMIDI as MidiMusic
import qualified Haskore.Interface.MIDI.Render as Render
import qualified Sound.MIDI.File as MidiFile

An example of self-similar, or fractal, music.

data Cluster = Cl SNote [Cluster] -- this is called a Rose tree
type Pat = [SNote]
type SNote = [(Pitch.Absolute,Dur)] -- i.e. a chord

sim :: Pat -> [Cluster]
sim pat = map mkCluster pat

where mkCluster notes = Cl notes (map (mkCluster . addmult notes) pat)

addmult :: (Num a, Num b) => [(a, b)] -> [(a, b)] -> [(a, b)]
addmult pds iss = zipWith addmult’ pds iss

where addmult’ (p,d) (i,s) = (p+i,d*s)

simFringe :: (Num a, Eq a) => a -> Pat -> [SNote]
simFringe n pat = fringe n (Cl [(0,0)] (sim pat))

151

fringe :: (Num a, Eq a) => a -> Cluster -> [SNote]
fringe 0 (Cl n _) = [n]
fringe m (Cl _ cls) = concatMap (fringe (m-1)) cls

-- this just converts the result to Haskore:
simToHask :: [[(Pitch.Absolute, Music.Dur)]] -> Melody.T ()
simToHask s = let mkNote (p,d) = Melody.note (Pitch.fromInt p) d ()

in line (map (chord . map mkNote) s)

-- and here are some examples of it being applied:

sim4 :: Int -> Melody.T ()
sim1, sim2, sim12, sim3, sim4s :: Int -> MidiMusic.T
t6, t7, t8, t9, t10 :: MidiFile.T

sim1 n = MidiMusic.fromMelodyNullAttr MidiMusic.AcousticBass
(transpose (-12)

(changeTempo 4 (simToHask (simFringe n pat1))))
t6 = Render.generalMidiDeflt (sim1 4)

sim2 n = MidiMusic.fromMelodyNullAttr MidiMusic.AcousticGrandPiano
(transpose 5

(changeTempo 4 (simToHask (simFringe n pat2))))
t7 = Render.generalMidiDeflt (sim2 4)

sim12 n = sim1 n =:= sim2 n
t8 = Render.generalMidiDeflt (sim12 4)

sim3 n = MidiMusic.fromMelodyNullAttr MidiMusic.Vibraphone
(transpose 0

(changeTempo 4 (simToHask (simFringe n pat3))))
t9 = Render.generalMidiDeflt (sim3 3)

sim4 n = (transpose 12
(changeTempo 2 (simToHask (simFringe n pat4’))))

sim4s n = let s = sim4 n
l1 = MidiMusic.fromMelodyNullAttr MidiMusic.Flute s
l2 = MidiMusic.fromMelodyNullAttr MidiMusic.AcousticBass

(transpose (-36) (Music.reverse s))
in l1 =:= l2

ss :: MidiMusic.T
ss = sim4s 3
durss :: Music.Dur
durss = Music.dur ss

t10 = Render.generalMidiDeflt ss

pat1, pat2, pat3, pat4, pat4’ :: [SNote]
pat1 = [[(0,1.0)],[(4,0.5)],[(7,1.0)],[(5,0.5)]]
pat2 = [[(0,0.5)],[(4,1.0)],[(7,0.5)],[(5,1.0)]]
pat3 = [[(2,0.6)],[(5,1.3)],[(0,1.0)],[(7,0.9)]]
pat4’ = [[(3,0.5)],[(4,0.25)],[(0,0.25)],[(6,1.0)]]
pat4 = [[(3,0.5),(8,0.5),(22,0.5)],[(4,0.25),(7,0.25),(21,0.25)],

152

[(0,0.25),(5,0.25),(15,0.25)],[(6,1.0),(9,1.0),(19,1.0)]]

B.4 Guitar

In this section we want to develop a simulation of a guitar. This clearly demonstrates the power of our music-
by-programming approach. After writing some routines for doing the mechanical stuff we can describe the
music concisely as a sequence of chords.

module Haskore.Example.Guitar where

import qualified Haskore.Basic.Pitch as Pitch
import Haskore.Basic.Pitch (Class(..))
import qualified Haskore.Basic.Duration as Dur
-- import Haskore.Melody.Standard as StdMelody
import Haskore.Music.GeneralMIDI as MidiMusic
import Haskore.Music.Rhythmic as RhyMusic
import qualified Haskore.Melody as Melody
import qualified Haskore.Music as Music

import qualified Data.List as List

On a guitar a chord is not played as an immediate sequence of the constituting notes, but the order and
the number of occurences of each tone is adapted to the guitar and the possibilities of the player. We want to
automatically design a sequence of tones that represents a given chord. Our approach is simple: For every
string we choose the lowest possible note which occurs in the chord. This way we may miss notes of the
chord, but we have a good approximation. If a chord consists of more than six notes, we have to ignore
some notes definitely.

For given pitches of all guitar strings and the pitch classes of a chord, mapChordToString compute
the tones that are played on each string of the guitar.

mapChordToString :: [Pitch.T] -> [Pitch.Class] -> [Pitch.T]
mapChordToString strs chrd =

map (choosePitchForString chrd) strs

choosePitchForString :: [Pitch.Class] -> Pitch.T -> Pitch.T
choosePitchForString chrd str@(_,pc) =

let diff x = mod (Pitch.classToInt x - Pitch.classToInt pc) 12
smallestDiff = minimum (map diff chrd)

in Pitch.transpose smallestDiff str

stringPitches :: [Pitch.T]
stringPitches =

reverse [(-2,E), (-2,A), (-1,D), (-1,G), (-1,B), (0,E)]

Once we obtain the tones that are played on a guitar we want to arrange them into a guitar like melody.
We distinguish between up strokes and down strokes, which are often played alternatingly. According to
the stroke direction, the low notes are played slightly before the high ones and vice versa. We define the
respective delays for each string. Since both direction are perceived differently, we have to prefetch the
down strokes a bit.

153

data Direction =
Up

| Down

delayTime :: Dur
delayTime = en/15

dirDelays :: Direction -> [Dur.Offset]
dirDelays dir =

map (Dur.toRatio delayTime *)
(case dir of

Up -> [0..5]
Down -> [2,1..(-3)])

Here is the only creative part: The essential description of the guitar music.

type UpDownPattern = [(Dur, Direction)]

udp, udpInter, udpLast :: UpDownPattern
udp = [(qn,Up), (en,Down), (qn,Up), (en,Down), (qn, Up)]
udpInter = [(qn,Up), (en,Down), (qn,Up), (en,Down), (en,Up), (en,Down)]
udpLast = [(qn,Up), (en,Down), (qn,Up), (en,Down), (qn+wn,Up)]

chords :: [([Pitch.Class], UpDownPattern)]
chords =

[([C,E,G], udp),
([C,E,G,Bf], udp),
([F,A,C], udp),
([F,Af,C], udpInter),
([C,E,G], udp),
([G,B,D], udp),
([C,F,G], udp),
([C,E,G], udpLast)]

The next step is to arrange the notes corresponding to the chords.

type DelayedNote = (Dur.Offset, (Dur, Maybe Pitch.T))

chordToPattern :: [Pitch.Class] -> UpDownPattern -> [[DelayedNote]]
chordToPattern chrd =

map (\(dur,ord) ->
zipWith

(\delay p -> (delay, (dur, Just p)))
(dirDelays ord)
(mapChordToString stringPitches chrd))

guitarEvents :: [[DelayedNote]]
guitarEvents =

concatMap (uncurry chordToPattern) chords

We want to simulate the guitar by a parallel composition of six strings. The sound of each string finishes
when the next sound on the string is played. Thus we have to compute the time each string oscillates. Finally
we want to obtain this pattern of events:

154

o o o
o o o
o o o
o o o
o o o
o o o

delayNotes :: [DelayedNote] -> [Melody.T ()]
delayNotes m =

let zero = (0, (0, Nothing))
in zipWith

(\(d0, (dur, at)) (d1, _) ->
Music.atom (Dur.add (d1-d0) dur)

(fmap (Melody.Note ()) at))
(zero : m) (m ++ [zero])

stringMelodies :: [Melody.T ()]
stringMelodies =

map (line . delayNotes) (List.transpose guitarEvents)

parallelSong :: [instr] -> RhyMusic.T drum instr
parallelSong instrs =

changeTempo 2 (chord (zipWith RhyMusic.fromMelodyNullAttr
instrs stringMelodies))

parallelSongMIDI :: MidiMusic.T
parallelSongMIDI =

transpose 12 (parallelSong (repeat MidiMusic.ElectricGuitarClean))

Unfortunately the Guitar music appears to be slightly longer than it is on the note sheet. To workaround
that we use notes of very short duration but very long legato. For simplicity this simulation is not as precise
as the one above. We don’t prefetch the down strokes and we do not exactly care for the correct length of
the string sounds. The resulting MIDI files does still not sound satisfyingly because notes of equal pitch
overlap, which is not properly supported by MIDI.

<----------------->
<-------------->

The end of the first note terminates the second one, which is not intended. Of course, you can play the
MidiMusic using other back ends.

chordWithLegatoPattern ::
[RhyMusic.T drum instr] -> UpDownPattern -> RhyMusic.T drum instr

chordWithLegatoPattern tones pattern =
let beat (dur, dir) =

legato dur
(line (case dir of {Up -> tones; Down -> reverse tones}) +:+
Music.rest (dur - delayTime * List.genericLength tones))

in line (map beat pattern)

155

legatoSong :: [instr] -> RhyMusic.T drum instr
legatoSong instrs =

changeTempo 2 (line (map
(uncurry

(chordWithLegatoPattern .
zipWith RhyMusic.fromMelodyNullAttr instrs .
map (Music.atom delayTime . Just . Melody.Note ()) .
mapChordToString stringPitches))

chords))

legatoSongMIDI :: MidiMusic.T
legatoSongMIDI =

transpose 12 (legatoSong (repeat MidiMusic.ElectricGuitarClean))

C Design discussion

This section presents the advantages and disadvantages of several design decisions that has been made.

Principal type T Analogously to Modula-3 we use the following naming scheme: A module has the name
of the principal type and the type itself has the name T. If there is only one constructor for that type its name
is Cons. If the main object of a module is a type class, its name is C. A function in a module don’t need a
prefix related to the principal type. Many functions can be considered as conversion functions. They should
be named TargetType.fromSourceType or SourceType.toTargetType. If there is a choice,
the first form is prefered. This does better fit to the order of functions and their arguments. Compare a =
A.fromB b and a = B.toA b.

A programmer using such a module is encouraged to import it with qualified identifiers. This way the
programmer may abbreviate the module name to its convenience.

Music.T The data structure should be hidden. The user should use changeTempo and similar functions
instead of the constructors Tempo etc. This way the definition of a Music.T stays independent from the
actual data structure Music.T. Then changeTempo can be implemented silently using a constructor or
using a mapping function.

Medium.T The idea of extracting the structure of animation movies and music into an abstract data
structure is taken from Paul Hudak’s paper “An Algebraic Theory of Polymorphic Temporal Media”.

The temporial media data structure Medium.T is used here as the basis type for Haskore’s Music.

Binary composition vs. List composition There are two natural representations for temporal media.
We have implemented both of them:

156

1. Medium.Plain.Binary uses binary constructors :+:, :=:

2. Medium.Plain.List uses List constructors Serial, Parallel

Both of these modules provide the functions foldBinFlat and foldListFlat which apply binary
functions or list functions, respectively, to Medium.T. Import your prefered module to Medium.

Each of these data structures has its advantages:

Medium.Binary.T

• There is only one way to represent a zero object, which must be a single media primitive (Prim).

• You need only a few constructors for serial and parallel compositions.

Medium.List.T

• Zero objects can be represented without a particalur zero primitives.

• You can represent two different zero objects, an empty parallelism and an empty serialism. Both can
be interpreted as limits of compositions of decreasing size.

• You can store music with an internal structure which is lost in a performance. E.g. a serial composition
of serial compositions will sound identical to a flattened serial composition, but the separation might
contain additional information.

In my (Henning’s) opinion Music.T is for representing musical ideas and Performance.T is for
representing the sound of a song. Thus it is ok and even useful if there are several ways to represent the
same sound impression (Performance.T) in different ways (Music.T), just like it is possible to write
very different LATEX code which results in the same page graphics. The same style of text may have different
meanings which can be seen only in the LATEX source code. Analogously music can be structured more
detailed than one can hear.

Algebraic structure The type Medium.T almost forms an algebraic ring where =:= is like a sum
(commutative) and +:+ is like a product (non-commutative). Unfortunately Medium.T is not really a ring:
There are no inverse elements with respect to addition (=:=). Further =:= is not distributive with respect
to +:+ because x is different from x =:= x. There is also a problem if the durations of the parallel music
objects differ. I.e. if dur y /= dur z then x +:+ (y =:= z) is different from (x +:+ y) =:=
(x +:+ z) even if x == x =:= x holds. So it is probably better not to make Medium.T an instance
of a Ring type class. (In Prelude 98 the class Num is quite a Ring type class.)

Relative times in Performance.T Absolute times for events disallow infinite streams of music. The
time information becomes more and more inaccurate and finally there is an overflow or no change in time.
Relative times make synchronization difficult, especially many small time differences are critical. But since
the Music.T is inherently based on time differences one cannot get rid of sum rounding errors. The
problem can only be weakened by more precise floating point formats.

157

Type variable for time and dynamics in Performance.T In the original design of Haskore Float
was the only fractional type used for time and volume measures in Performance.T. This is good with
respect to efficiency. But rounding errors make it almost impossible to test literal equivalence (Section 3.2.1)
between different music expressions. In order to match both applications I introduced type variables time
and dyn which is now floating all around. It also needs some explicit type hints in some cases where
the performance is only an interim step. In future Music.T itself might get a time type parameter. We
should certainly declare types for every-day use such as CommonMusic.T which instantiates Music.T
with Double or so.

Unification of Rests and Notes Since rests and notes share the property of the duration, the constructor
Music.Atom is used which handles the duration and the particalur music primitive, namely Rest and Note.
All functions concerning duration (dur, cut) don’t need to interpret the musical primitive.

Pitch With the definition Pitch = (Octave, PitchClass) (swapped order with respect to origi-
nal Haskore) the order on Pitch equals the order on pitches. Functions like o0, o1, o2 etc. may support
this order for short style functional note definitions. It should be e.g. o0 g == g 0. Alternatively one
can put this into a duration function like qn’, en’, etc. Then it must hold e.g. qn’ 0 g == g 0 qn

The problem is that the range of notes of the enumeration PitchClass overlaps with notes from
neighbouring octaves. Overlapping PitchClasses, e.g. (0,Bs) < (1,Cf) although absPitch
(0,Bs) > absPitch (1,Cf)

The musical naming of notes is a bit unlogical. The range is not from A to G but from C to B. Further
on there are two octaves with note names without indices (e.g. A and a). Both octaves are candidates for a
“zero” octave. We define that octave 0 is the one which contains a.

Absolute pitch Find a definition for the absolute pitch that will be commonly used for MIDI, CSound,
and Signal output.

Yamaha-SY35 manual says:

• Note $00 - (-2,C)

• Note $7F - (8,G)

But which A is 440 Hz?

By playing around with the Multi key range I found out that the keyboard ranges from (1,C) to (6,C) (in
MIDI terms). The frequencies of the instruments played at the same note are not equal. :-(Many of them
have (3,A) (MIDI) = 440 Hz, but some are an octave below, some are an octave above. In CSound it was
(8,A) = 440 Hz in original Haskore. Very confusing.

Volume vs. Velocity MIDI distinguishes Volume and Velocity. Volume is related to the physical ampli-
tude, i.e. if we want to change the Volume of a sound we simply amplify the sound by a constant factor.
In contrast to that Velocity means the speed with which a key is pressed or released. This is most oftenly

158

interpreted as the force with which an instrument is played. This distinction is very sensible and is reflected
in Music.T. Velocity is inherently related to the beginning and the end of a note, whereas the Volume
can be changed everywhere. All phrases related to dynamics are mapped to velocities and not to volumes,
since one cannot change the volume of natural instruments without changing the force to play them (and
thus changing their timbre). The control of Volume is to be added later, together with controllers like pitch
bender, frequency modulation and so on.

Global instrument setting vs. note attribute In the original version of Haskore, there was an Instr
constructor that set the instrument used in the enclosed piece of music. I found that changing an instrument
by surrounding a piece of music with a special constructor is not very natural. On which parts of the piece
it has an effect or if it has an effect at all depends on Instr statements within the piece of music. To assert
that instruments are set once and only once and that setting an instrument has an effect, we distinguish
between (instrument-less) melodies and music (with instrument information) now. In a melody we store
only notes and rests, in a music we store an instrument for any note. Even more since the instrument is
stored for each note this can be interpreted as an instrument event, where some instruments support note
pitches and others not (sound effects) or other attributes (velocity).

PhraseFun The original Haskore version used PhraseFuns of the type Music.T ->
(Performance.T, Dur). This way it was a bit cumbersome to combine different phrases. In
principle all PhraseFuns could be of type (Performance.T, Dur) -> (Performance.T,
Dur) This would be a more clean design but lacks some efficiency because e.g. the Loudness can be
controlled by changing the default velocity of the performance context. This is much more efficient (even
more if Loudness phrases are cascaded) than modifying a performance afterwards. Now the performance is
no longer generated as-is, but it is enclosed in a state monad, that manages the Performance.Context.
The PhraseFuns are now of type Performance.PState -> Performance.PState which is
both clean and efficient.

Phrase The original version of Haskore used a list of PhraseAttributes for the Phrase constructor.
Now it allows only one attribute in order to make the order of application transparent to the user.

Type of Music.Dur Durations are represented as rational numbers; specifically, as ratios of two Haskell
Integer values. Previous versions of Haskore used floating-point numbers, but rational numbers are more
precise and allow quick-checking of music composition properties.

159

References

[AK92] D.P. Anderson and R. Kuivila. Formula: A programming language for expressive computer
music. In Denis Baggi, editor, Computer Generated Music. IEEE Computer Society Press,
1992.

[Ary94] K. Arya. A functional animation starter-kit. Journal of Functional Programming, 4(1):1–18,
1994.

[Bal92] M. Balaban. Music structures: Interleaving the temporal and hierarchical aspects of music. In
M. Balaban, K. Ebcioglu, and O. Laske, editors, Understanding Music With AI, pages 110–
139. AAAI Press, 1992.

[BW88] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall, New York,
1988.

[Col84] D. Collinge. Moxie: A languge for computer music performance. In Proc. Int’l Computer
Music Conference, pages 217–220. Computer Music Association, 1984.

[CR84] P. Cointe and X. Rodet. Formes: an object and time oriented system for music composition
and synthesis. In Proceedings of the 1984 ACM Symposium on Lisp and Functional Program-
mming, pages 85–95. ACM, 1984.

[Dan89] R.B. Dannenberg. The Canon score language. Computer Music Journal, 13(1):47–56, 1989.

[DFV92] R.B. Dannenberg, C.L. Fraley, and P. Velikonja. A functional language for sound synthesis
with behavioral abstraction and lazy evaluation. In Denis Baggi, editor, Computer Generated
Music. IEEE Computer Society Press, 1992.

[For73] A. Forte. The Structure of Atonal Music. Yale University Press, New Haven, CT, 1973.

[HB95] P. Hudak and J. Berger. A model of performance, interaction, and improvisation. In Proceed-
ings of International Computer Music Conference. Int’l Computer Music Association, 1995.

[Hen82] P. Henderson. Functional geometry. In Proceedings of the 1982 ACM Symposium on Lisp and
Functional Programmming. ACM, 1982.

[HF92] P. Hudak and J. Fasel. A gentle introduction to Haskell. ACM SIGPLAN Notices, 27(5), May
1992.

[HMGW96] P. Hudak, T. Makucevich, S. Gadde, and B. Whong. Haskore music notation – an algebra of
music. Journal of Functional Programming, 6(3), June 1996. available via
ftp://nebula.systemsz.cs.yale.edu/pub/yale-fp/papers/haskore/
hmn-lhs.ps.

[HS92] G. Haus and A. Sametti. Scoresynth: A system for the synthesis of music scores based on petri
nets and a music algebra. In Denis Baggi, editor, Computer Generated Music. IEEE Computer
Society Press, 1992.

[IMA90] Midi 1.0 detailed specification: Document version 4.1.1, February 1990.

160

ftp://nebula.systemsz.cs.yale.edu/pub/yale-fp/papers/haskore/hmn-lhs.ps
ftp://nebula.systemsz.cs.yale.edu/pub/yale-fp/papers/haskore/hmn-lhs.ps

[JB91] D. Jaffe and L. Boynton. An overview of the sound and music kits for the NeXT computer. In
S.T. Pope, editor, The Well-Tempered Object, pages 107–118. MIT Press, 1991.

[OFLB94] O. Orlarey, D. Fober, S. Letz, and M. Bilton. Lambda calculus and music calculi. In Proceed-
ings of International Computer Music Conference. Int’l Computer Music Association, 1994.

[Sch83] B. Schottstaedt. Pla: A composer’s idea of a language. Computer Music Journal, 7(1):11–20,
1983.

[Ver86] B. Vercoe. Csound: A manual for the audio processing system and supporting programs.
Technical report, MIT Media Lab, 1986.

161

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined
refer to the definition; numbers in roman refer to the pages where the entry is used.

A
abstract musical ideas 3
ad nauseum 11
additive 40
additive synthesis 105
algebra of music 3, 37
amplitude envelope 110
amplitude modulation 113
associative 41
axioms 37

C
carrier 113
channel 53
chord 11
commutative 40, 41
concrete implementations 3
control rate 80, 110
CSound name map 75

D
delay line 120, 121
depth 115
description 138
distributive 41

E
equality 24
equational reasoning 3
equivalent 36
events 33
executable Haskell program . . . 5
executable specification language 3
extensible 3

F
frequency modulation 88, 113, 114
Fugue 137
Function table 70, 105
functional animation 138
functional geometry 138
functional programming 3
fundamental 109

G
General Midi 53
generating routines 71

H
harmonics 109
header 80, 108

I
index of modulation 88
instrument 4, 69
instrument blocks 80
interpretation 138
interval normal form 24
intervalically 23
inverses 24
inversion 24

K
Karplus-Strong algorithm 119

L
legato 120
line 11
literal performance 3, 36
literate programming style 5

M
melody 11
meta events 53
modifiable 3
modifying 111
modulation 113
modulation index 115
modulation synthesis 113
modulator 113
multi-timbral 53
multiplicative 40
musical events 53
musical object 4

N
note event 70

O
observationally equivalent 3
octave 5
orchestra 69
orchestra expressions 81
output statements 95
overtone series 109

P
p-fields 70, 111

panning 111
partials 109
percussion 53
performance 4, 22, 33
phase shifted 115
physical modelling 119
pitch 5, 23
pitch class 5
pitch normal form 23
player 4, 33, 42
polyphonic 53
Program Change 66
program patch number 53

R
recursive filter smoothing 90

S
sawtooth 112
score 69, 77
score statements 70
simple drum 90
simple smoothing 90
snare drum 119
sound file 69
spectra 110
square 112
standard Midi file 53
stretched drum 90, 119
stretched smooth 119
stretched smoothing 90

T
tapped 121
tempo 70
transformations 36
triangle 112
trill 18
triplet 30

U
unit 42

W
weighted average 119
weighted smoothing 90

Z
zero 42

162

	Introduction
	Acknowledgements

	The Architecture of Haskore
	Creation of Music
	Composing Music
	Pitch
	Music
	Duration
	Rests
	Some Simple Examples
	Trills
	Percussion
	Phrasing and Articulation
	Intervals
	Chords
	Scales
	Tempo

	Interpretation and Performance
	Equivalence of Literal Performances

	Players
	Conversion functions with default settings
	Examples of Player Construction

	Conversion functions with default settings

	Interfaces to other musical software
	Connect Performance to a Back-End
	Midi
	The Gory Details
	Instrument map
	Reading Midi files

	CSound
	The Score File
	The Orchestra File
	Tutorial

	MML

	Processing and Analysis
	Optimization
	Structure Analysis
	Markov Chains
	Pretty printing Music

	Related and Future Research
	Helper modules
	Convenient Functions for Getting Started With Haskore and MIDI
	Test routines
	Some General Midi test functions

	Utility functions

	Examples
	Haskore in Action
	Children's Song No. 6
	Self-Similar (Fractal) Music.T
	Guitar

	Design discussion

